Skip to main content
Log in

Small polaron transport in V2O5–NiO–TeO2 glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting glasses of the V2O5–NiO–TeO2 system were prepared by the press-quenching method and their d.c. conductivities in the temperature range 300–450 K were measured. The d.c. conductivities at 395 K for the present glasses were determined to be 10−7 to 10−1 S m−1, indicating that the conductivity increased with increasing V2O5 concentration. A glass of composition 67.5V2O5–2.5NiO–30TeO2 (mol %) having a conductivity of 2.47×10−2 S m−1 at a temperature of 395 K was found to be the most conductive glass among the vanadium-tellurite glasses. From the conductivity–temperature relation, it was found that a small polaron hopping model was applicable at the temperature above θD/2 (θD: the Debye temperature); the electrical conduction at TD/2 was due to adiabatic small polaron hopping of electrons between vanadium ions. The polaron bandwidth ranged from 0.06 to 0.21 eV. The hopping carrier mobility varied from 1.1×10−7 to 5.48×10−5 cm2 V−1 s−1 at 400 K. The carrier density is evaluated to be 1.85×1019–5.50×1019 cm−3. The conductivity of the present glasses was primarily determined by hopping carrier mobility. In the low-temperature (below θD/2) regime, however, both Mott's variable-range hopping and Greaves intermediate range hopping models are found to be applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Murawski, C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 32 (1979) 91.

    Google Scholar 

  2. M. Sayer and A. Mansingh, ibid. 58 (1983) 91.

    Google Scholar 

  3. H. Hirashima, D. Arai and T. Yoshida, J. Am. Ceram. Soc. 68 (1985) 486.

    Google Scholar 

  4. E. Culea and A. R. Nicula, Solid State Commun. 58 (1986) 545.

    Google Scholar 

  5. V. K. Dhawan, A. Mansingh and M. Sayer, J. Non-Cryst. Solids 51 (1982) 87.

    Google Scholar 

  6. N. Lebrum, M. LÊvy and J. L. Souquet, Solid State Ion 40 & 41 (1990) 718.

    Google Scholar 

  7. N. F. Mott, Adv. Phys. 16 (1967) 49.

    Google Scholar 

  8. I. G. Austin and N. F. Mott ibid. 18 (1969) 41.

    Google Scholar 

  9. M. Sayer and A. Mansingh, J. Non-Cryst. Solids 42 (1980) 357.

    Google Scholar 

  10. A. K. Bandyopadhyay and I. O. Isard, J. Phys. D 10 (1977) L 99.

    Google Scholar 

  11. H. Hirashima, M. Mitsuhashi and T. Yoshida, Yogyo-Kyokai Shi 90 (1982) 411.

    Google Scholar 

  12. H. Hirashima, K. Nishii and T. Yoshida, J. Am. Ceram. Soc. 66 (1983) 704.

    Google Scholar 

  13. R. Singh and K. Sethupathi, J. Phys. D 22 (1989) L 709.

    Google Scholar 

  14. H. Mori, J. Igarashi and H. Sakata, J. Ceram. Soc. Jpn 101 (1993) 1351.

    Google Scholar 

  15. H. Mori and H. Sakata, ibid. 31 (1996) 1621.

    Google Scholar 

  16. T. Holstein, Ann. Phys. 8 (1959) 325.

    Google Scholar 

  17. J. Schnakenberg, Phys. Stat. Sol. 28 (1968) 623.

    Google Scholar 

  18. D. Emin, Adv. Phys. 24 (1975) 305.

    Google Scholar 

  19. D. Emin, Phys. Rev. Lett. 32 (1974) 303.

    Google Scholar 

  20. E. Gorham and D. Emin, Phy. Rev. B 15 (1977) 3667.

    Google Scholar 

  21. K. Sega, Y. Kuroda and H. Sakata, J. Mater. Sci. 33 (1998) 1303.

    Google Scholar 

  22. N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon, Oxford, 1979).

    Google Scholar 

  23. A. Miller and E. Abrahams, Phys. Rev. 120 (1969) 745.

    Google Scholar 

  24. H. Hirashima, H. Kurokawa, K. Mizobuchi and T. Yoshida, Glastech. Ber. 61 (1988) 151.

    Google Scholar 

  25. H. Mori, T. Kitami and H. Sakata, J. Non-Cryst. Solids 168 (1994) 157.

    Google Scholar 

  26. H. Mori and H. Sakata, Glastech. Ber. 68 (1995) 327.

    Google Scholar 

  27. K. Sega, H. Kasai and H. Sakata, Mater. Chem. Phys. 53 (1998) 28.

    Google Scholar 

  28. M. B. Field, J. Appl. Phys. 40 (1969) 2628.

    Google Scholar 

  29. H. Nasu, K. Hirao and N. Soga, J. Am. Ceram. Soc. 64 (1981) C63.

    Google Scholar 

  30. H. H. Qiu, M. Kudo and H. Sakata, Mater. Chem. Phys. 51 (1997) 233.

    Google Scholar 

  31. H. Sakata, K. Sega and B. K. Chaudhuri Phys. Rev. B 5 (1999) 2330.

    Google Scholar 

  32. H. Mori, H. Motsuno and H. Sakata, J. Non-Cryst. Solids 276 (2000) 78.

    Google Scholar 

  33. H. R. Killias, Phys. Lett. 20 (1966) 5.

    Google Scholar 

  34. I. G. Austin and E. S. Garbet, in “Electronic and Structural Properties of Amorphorus Semiconductors”, edited by P. G. Le Comber and J. Mort (Academic Press. New York, 1973) p. 393.

    Google Scholar 

  35. M. Sayer and A. Manshingh, Phys. Rev. B 6 (1972) 4629.

    Google Scholar 

  36. R. A. Anderson and R. K. Maccrone, J. Non-Cryst. Solids 14 (1974) 112.

    Google Scholar 

  37. D. Emin and T. Holstein, Ann. Phys. 53 (1969) 439.

    Google Scholar 

  38. V. N. Bogomolov, E. K. Kudinev and Yu. A. Firsov, Sov. Phys. Solid State 9 (1968) 2502 (Fiz. Tverd. Tela 9 (1967) 3175).

    Google Scholar 

  39. S. Chakraborty, M. Sadhukhan, D. K. Modak and B. K. Chaudhuri J. Mater. Sci. 30 (1995) 5139.

    Google Scholar 

  40. M. H. Cohen, J. Non-Cryst. Solids 4 (1970) 391.

    Google Scholar 

  41. N. F. Mott, ibid. 1 (1968) 1.

    Google Scholar 

  42. N. F. Mott Philos. Mag. 19 (1969) 835.

    Google Scholar 

  43. G. N. Greaves, J. Non-Cryst. Solids 11 (1973) 427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Desoky, M.M. Small polaron transport in V2O5–NiO–TeO2 glasses. Journal of Materials Science: Materials in Electronics 14, 215–221 (2003). https://doi.org/10.1023/A:1022981929472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022981929472

Keywords

Navigation