Skip to main content
Log in

Frequency Dependent Conductivity of Thin ZnO Films Prepared by R.F. Sputtering Technique

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

AC conductivity of different thin zinc oxide films measured in the frequency range of 10 Hz to 2 MHz in the temperature interval of 300 K to 575 K is reported. ZnO films were prepared by reactive r.f. magnetron sputtering from ZnO target. The experimental data reveal that a.c. conductivity is proportional to ωs. The value of s was found to be temperature dependent, decreases with increasing temperature. These observations suggest that correlated barrier hopping model is the most likely mechanism. The temperature dependence of a.c. Conductivity is expressed in power law form as σ(ω) ∝T n. The temperature exponent n is found to be increasing with increasing temperature and decreasing frequency in accordance with the narrow band limit. At high temperature the conductivity variation with frequency is comparatively small. The polaron binding energy (W m), the height of Coulomb barrier (W) and the characteristic relaxation time (τ0) have been calculated. The values of W m and W increase as the thickness decreases whereas the values of τ0 decrease with decreasing thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hirschwald et al.: in Current Topics in Material Science, Vol.7 (Ed. E. Kaldis), North Holland, Armsterdam, 1981, chap. 3.

    Google Scholar 

  2. O. Madelung (Ed.): Data in Science and Technology: Semiconductors, other than group IV elements and III-V compounds, Springer Verlag, New York, 1992.

    Google Scholar 

  3. Y. Nakagawa: Appl. Phys. Lett. 31 (1977) 56.

    Google Scholar 

  4. P.K. Tien: Appl. Opt. 10 (1971) 2395.

    Google Scholar 

  5. H. Nalo, S. Tsubakino, T. Kawi, M. Ikeda, S. Kitagawa, and M. Habara: J. Mater. Sci. 29 (1994) 6529.

    Google Scholar 

  6. X. Wang, W.P. Careg, and S.S. Yee: Sens. Actuators B 28 (1995) 63.

    Google Scholar 

  7. H. Watanabe: Jpn. J. Appl. Phys. 9 (1970) 418.

    Google Scholar 

  8. H. Sato, T. Minami, Y. Tamura, S. Takata, T. Mouri, and N. Ogawa: Thin Solid Films 246 (1994) 86.

    Google Scholar 

  9. F.S. Mahmood, R.D. Gould, A.K. Hassan, and H.M. Salih: Thin Solid Films 270 (1995) 376.

    Google Scholar 

  10. K.B. Sundaramand A. Khan: Thin Solid Films 295 (1997) 87.

    Google Scholar 

  11. T. Hata, T. Minamikawa, O. Morimoto, and T. Hada: J. Cryst. Growth 47 (1979) 171.

    Google Scholar 

  12. H. Sato, T. Minami, T. Miyata, S. Takata, and M. Ishii: Thin Solid Films 246 (1994) 65.

    Google Scholar 

  13. Y. Li and G.S. Tompa: J. Vac. Sci. Technology A 15 (1997) 1063.

    Google Scholar 

  14. J. Nishino, T. Kawarada, S. Ohsio, H. Saitho, K. Maruyama, and K. Kamata: J. Mater. Sci. Lett. 6 (1997) 629.

    Google Scholar 

  15. J. Hu and R.G. Gordon: Solar Cells 30 (1991) 437.

    Google Scholar 

  16. Y. Takahashi, M. Kanamori, and A. Kondoh: Jpn. J. Appl. Phys. 33 (1994) 6611.

    Google Scholar 

  17. Y. Ohya, H. Saiki, and Y. Takahashi: J. Mater. Sci. 29 (1994) 4099.

    Google Scholar 

  18. M. Izaki and T. Omi: Appl. Phys. Lett. 68 (1996) 2439.

    Google Scholar 

  19. D.E. Brodie, R. Singh, J.H. Morgan, J.D. Leslie, I.J. Moore, and A.E. Dixon: in Proc. 14th IEEE Photovoltaic Specialists Conf., San Diego (CA), IEEE, New York, 1980, p. 468.

    Google Scholar 

  20. S. Major, A. Banerjee, and K.L. Chopra: Thin Solid Films 108 (1983) 333.

    Google Scholar 

  21. S. Major, A. Banerjee, and K.L. Chopra: Thin Solid Films 125 (1985) 468.

    Google Scholar 

  22. S.E. Demian: J. Mater. Sci. Mater. Electron 5 (1994) 360.

    Google Scholar 

  23. C. Messaondi, D. Sayah, and M. Abd-Lefdil: Phys. Status Solidi A 151 (1995) 93.

    Google Scholar 

  24. M. Krunks and E. Mellikov: Thin Solid Films 270 (1995) 33.

    Google Scholar 

  25. A. Tiburrcio-Silver, J.C. Joubert, and M. Labeau: J. Phys. III 2 (1992) 1287.

    Google Scholar 

  26. T. Young Ma, S. HyumKim, H. Yul Moon et al.: Jpn. J. Appl. Phys. 35 (1996) 6208.

    Google Scholar 

  27. C. Kun Ryn and K. Kim: Appl. Phys. Lett. 67 (1995) 3337.

    Google Scholar 

  28. G.J. Exarhos and S.K. Sharma: Thin Solid Films 270 (1995) 27.

    Google Scholar 

  29. S.R. El1otti: Adv. Phy. 31 (1981) 135.

    Google Scholar 

  30. A.R. Long: Adv. Phys. 31 (1982) 553.

    Google Scholar 

  31. N.F. Mott and E.A. Davis: Electronic Processes in Non-Crystalline Materials, 2nd ed., Clarendon Press, Oxford, 1979.

    Google Scholar 

  32. M. Polak: Philos. Mag. 23 (1971) 519.

    Google Scholar 

  33. H. Bottgerand and V.V. Bryskin: Phys. Status Solidi B 78 (1976) 415.

    Google Scholar 

  34. A.L. Efros: Philos. Mag. B 43 (1981) 829.

    Google Scholar 

  35. L.G. Austin and N.F. Mott: Adv. Phys. 18 (1969) 41.

    Google Scholar 

  36. M. Polak and G.E. Pike: Phys. Rev. Lett. 28 (1972) 1449.

    Google Scholar 

  37. G.E. Pike: Phys. Rev. B 6 (1972) 1572.

    Google Scholar 

  38. S.R. Ellotti: Adv. Phys. 36 (1987) 135.

    Google Scholar 

  39. S.R. Ellotti: Philos. Mag. B 37 (1978) 553. 270 Czech. J. Phys. 53 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, K., Chattopadhyay, S.K., Meikap, A. et al. Frequency Dependent Conductivity of Thin ZnO Films Prepared by R.F. Sputtering Technique. Czechoslovak Journal of Physics 53, 263–270 (2003). https://doi.org/10.1023/A:1022981115812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022981115812

Navigation