Skip to main content
Log in

Letter: A Model of Dark Energy for the Accelerating Universe

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recent observations of large scale structure of the Universe, especially that of Type Ia supernovae, indicate that the Universe is flat and is accelerating, and that the dominant energy density in the Universe is the cosmic dark energy. We propose a model in which the cosmic effective Yang-Mills condensate familiar in particle physics plays the role of the dark energy that causes the acceleration of the Universe. Since the quantum effective Yang-Mills field in certain states has the equation of state p y = −ρ y , when employed as the cosmic matter source, it naturally results in an accelerating expansion of the Universe. With the matter components (Ω m ∼ 1/3) being added into the model, the composition of YM condensate and matter components can give rise to the desired equation of state w ∼ −2/3 for the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Perlmutter, S. et al., (1999). Astrophys. J. 517, 565.

    Google Scholar 

  2. Feynman, R., and Hibbs, A. (1965). Path Integrals and Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  3. Weinberg, S. (1987). Rev. Mod. Phys. 61, 1

    Google Scholar 

  4. Weinberg, S. (1987). In Critical Dialogues in Cosmology, ed. by Turok, N. (1997). World Scientific Singapore

  5. Weinberg, S. (2000). Phys. Rev. D 61, 103505; astro-ph/0005265.

    Google Scholar 

  6. Peebles, P. J. E., and Ratra, B. (1988). Astrophys. J. 325, L17

    Google Scholar 

  7. Ratra, B., and Peebles, P. J. E. (1988). Phys. Rev. D 27, 3406.

    Google Scholar 

  8. Wetterich, C. (1988). Nucl. Phys. B 302, 668.

    Google Scholar 

  9. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P. J. (2000). Phys. Rev. Lett. 85, 4438.

    Google Scholar 

  10. Guth, A. (1981). Phys. Rev. D 23, 347.

    Google Scholar 

  11. Linde, A. (1982). Phys. Lett. B 108, 389

    Google Scholar 

  12. Albrecht, A., and Steinhardt, R. (1982). Phys. Rev. Lett. 48, 1220.

    Google Scholar 

  13. Parker, L., and Raval, A. (1999). Phys. Rev. D 60, 063512.

    Google Scholar 

  14. Coleman, S., and Weinberg, E. (1973). Phys. Rev. D 7, 1888.

    Google Scholar 

  15. Bondi, H., and Gold, T. (1948). Mon. Not. R. Astron. Soc. 108, 252.

    Google Scholar 

  16. Hoyle, F. (1949). Mon. Not. R. Astron. Soc. 108, 372.

    Google Scholar 

  17. Hoyle, F., and Narlikar, J. V. (1962). Proc. Roy. Soc. London A 270, 334

    Google Scholar 

  18. Narlikar, J. V. (1973). Nature 242, 135.

    Google Scholar 

  19. Zhang, Y. (2002). Gen. Rel. Grav. 34, 2155.

    Google Scholar 

  20. Parker, L., and Zhang, Y. (1991). Phys. Rev. D 44, 2421

    Google Scholar 

  21. Parker, L., and Zhang, Y. (1993). Phys. Rev. D 47, 416

    Google Scholar 

  22. Zhang, Y. (2000). Chin. Phys. Lett. 17, 76.

    Google Scholar 

  23. Pagels, H., and Tomboulis, E. (1978). Nucl. Phys. B 143, 485.

    Google Scholar 

  24. Adler, S. (1981). Phys. Rev. D 23, 2905

    Google Scholar 

  25. Adler, S. (1983). Nucl. Phys. B 217, 3881.

    Google Scholar 

  26. Zhang, Y. (1994). Phys. Lett. B 340, 18

    Google Scholar 

  27. Zhang, Y. (1997). Chin. Phys. Lett. 14, 237.

    Google Scholar 

  28. Adler, S., and Piran, T. (1982). Phys. Lett. B 117, 91

    Google Scholar 

  29. Adler, S., and Piran, T. (1984). Rev. Mod. Phys. 56, 1.

    Google Scholar 

  30. Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime, Cambridge University Press.

  31. Chodos, A. et al., (1974). Phys. Rev. D 9, 3471

    Google Scholar 

  32. Johnson, K. (1978). Phys. Lett. B 78, 259.

    Google Scholar 

  33. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K., and Kang, H. S. (1991). Astrophys. J. 376, 51.

    Google Scholar 

  34. White, S. D. M., Navarro, J. F., Evrard, A., and Frenk, C. (1993). Nature 366, 429

    Google Scholar 

  35. Fukugita, M., Hogan, C. J., and Peebles, P. J. E. (1998). Astrophys. J. 503, 528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. Letter: A Model of Dark Energy for the Accelerating Universe. General Relativity and Gravitation 35, 689–696 (2003). https://doi.org/10.1023/A:1022970219502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022970219502

Navigation