Skip to main content
Log in

A three-dimensional graphical aid to analyze fatigue crack nucleation and propagation phases under fatigue limit conditions

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A three-dimensional diagram is presented in which the fatigue limit of notched components is plotted as a function of the notch stress concentration factor K t and the α2 a/a 0 ratio, α, a and a 0 being a shape factor, the notch depth and the El Haddad–Smith–Topper length parameter, respectively. Intersections with the planes normal to the axes allow the display of the different influence of crack nucleation and propagation on the fatigue limit of notched components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atzori, B. and Lazzarin, P. (2001). Notch sensitivity and defect sensitivity under fatigue loading: two sides of the same medal. International Journal of Fracture 107, L3-L8.

    Google Scholar 

  • Atzori, B., Lazzarin, P. and Tovo, R. (1999). Stress field parameters to predict the fatigue strength of notched components. Journal of Strain Analysis 34, 437–453.

    Google Scholar 

  • Atzori, B., Lazzarin, P. and Meneghetti, G. (2002a). Interpretation of the fatigue limit of materials based on micromechanics. Proceedings of the 8th International Fatigue Congress, Stockholm, Sweden, Volume III (Edited by A.F. Blom), EMAS Publishing, pp. 1857–1864.

  • Atzori, B., Lazzarin, P. and Meneghetti, G. (2003). Fracture mechanics and notch sensitivity. Fatigue and Fracture of Engineering Materials and Structures 26, 257–267.

    Google Scholar 

  • Atzori, B., Lazzarin, P. and Meneghetti, G. (2002b). Sensitivity to defects and fracture mechanics for metallic materials under fatigue loading. Proceedings of the 14th European Conference on Fracture 'Fracture mechanics beyond 2000', Cracow, Poland. Volume I (Edited by A. Neimitz, I.V. Rokach, D. Kocanda, K. Golos), EMAS Publishing, pp. 129–136.

    Google Scholar 

  • DuQuesnay, D.L., Yu, M.T. and Topper, T.H. (1988). An analysis of notch size effect on the fatigue limit. Journal of Testing and Evaluation 4, 375–385.

    Google Scholar 

  • Frost, N.E. (1957). Non-propagating cracks in Vee-notched specimens subjected to fatigue loading. Aeronaut. Quart. VIII, 1–20.

    Google Scholar 

  • Frost, N.E. (1959). A relation between the critical alternating propagation stress and crack length for mild steel. Proc. Inst. Mech. Engrs. 173, 811–834.

    Google Scholar 

  • Frost, N.E., Marsh, K.J. and Pook, L.P. (1974). Metal Fatigue. Oxford University Press, Oxford.

    Google Scholar 

  • Harkegard, G. (1981). An effective stress intensity factor and the determination of the notched fatigue limit. Fatigue Thresholds: Fundamentals and Engineering Applications, Vol II (Edited by J. Backlund, A.F. Blom and C.J. Beevers), Chameleon Press Ltd., London, pp. 867–879.

    Google Scholar 

  • Kitagawa, H. and Takahashi, S. (1976). Applicability of fracture mechanics to very small cracks in the early stage. Proceedings Second International Conference on Mechanical Behaviour of Materials, pp. 627–631.

  • Lazzarin, P., Tovo, R. and Meneghetti, G. (1997). Fatigue Crack Initiation and Propagation Phases near Notches in Metals with Low Notch Sensitivity. International Journal of Fatigue 19, 647–657.

    Google Scholar 

  • Lukas, P., Kunz, L., Weiss, B. and Stickler, R. (1986). Non-damaging notches in fatigue. Fatigue and Fracture of Engineering Materials and Structures 9, 195–204.

    Google Scholar 

  • Neuber, H. (1968) Ñber die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruction 20, 245–251.

    Google Scholar 

  • Nisitani, H. and Endo, M. (1988) Unified treatment of Deep and Shallow Notches in Rotating Bending Fatigue. ASTM ST924. Basic Questions in Fatigue I, 136–153.

    Google Scholar 

  • Peterson, R.E. (1959). Notch sensitivity. In: Metal Fatigue (Edited by G. Sines and J.L. Waisman), McGraw Hill, New York, pp. 293–306.

    Google Scholar 

  • Smith, R.A. and Miller, K.J. (1978). Prediction of fatigue regimes in notched components. International Journal of Mechanical Science 20, 201–206.

    Google Scholar 

  • Tanaka, K. (1983). Engineering formulae for fatigue strength reduction due to crack-like notches. International Journal of Fracture 22, R39–R46.

    Google Scholar 

  • Tanaka, K. and Akiniwa, Y. (1987). Notch geometry effect on propagation threshold of short fatigue cracks in notched components. Fatigue `87, Vol. II (Edited by R.O. Ritchie and E.A. Starke Jr), 3rd International Conference on Fatigue and Fatigue Thresholds, Charlottesville, Va, pp. 739–748.

  • Tanaka, K. and Nakai, Y. (1983). Propagation and non propagation of short fatigue cracks at a sharp notch. Fatigue and Fracture of Engineering Materials and Structures 6, 315–327.

    Google Scholar 

  • Tanaka, K., Nakai, Y. and Yamashita, M. (1981). Fatigue growth threshold of small cracks. International Journal of Fracture 17, 519–533.

    Google Scholar 

  • Taylor, D. (1999). Geometrical effects in fatigue: a unifying theoretical model. International Journal of Fatigue 21, 413–420.

    Google Scholar 

  • Taylor, D. (2001). A mechanistic approach to critical-distance methods in notch fatigue. Fatigue and Fracture of Engineering Materials and Structures 24, 215–224.

    Google Scholar 

  • Taylor, D. and Wang, G. (2000). The validation of some methods of notch fatigue analysis. Fatigue and Fracture of Engineering Materials and Structures 23, 387–384.

    Google Scholar 

  • Ting, J.C. and Lawrence, F.V. (1993) A crack closure model for predicting the threshold stresses of notches. Fatigue and Fracture of Engineering Materials and Structures 16, 93–114.

    Google Scholar 

  • Yu, M.T., DuQuesnay, D.L. and Topper, T.H. (1988). Notch fatigue behaviour of SAE 1045 steel. International Journal of Fatigue 10 (2), 109–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atzori, B., Lazzarin, P. A three-dimensional graphical aid to analyze fatigue crack nucleation and propagation phases under fatigue limit conditions. International Journal of Fracture 118, 271–284 (2002). https://doi.org/10.1023/A:1022965909483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022965909483

Navigation