Advertisement

Genetica

, Volume 118, Issue 1, pp 83–91 | Cite as

Comparative Cytogenetics and Chromosomal Characteristics of Ribosomal DNA in the Fish Genus Vimba (Cyprinidae)

  • M. Rábová
  • P. Ráb
  • C. Ozouf-Costaz
  • C. Ene
  • J. Wanzeböck
Article

Abstract

Karyotypic and cytogenetic characteristics of Vimba vimba and V. elongata were investigated using differential staining techniques (sequential C-banding, Ag- and CMA3-staining) and fluorescent in situ hybridization (FISH) with 28S rDNA probe. The diploid chromosome number in both species was 2n = 50 with 8 pairs of metacentrics, 14 pairs of submetacentrics to subtelocentrics and 3 pairs of subtelo- to acrocentrics. The largest chromosome pair of the complements was characteristically subtelo- to acrocentric. The nucleolar organizer regions (NORs) in both species were detected in the telomeres of a single, middle-sized subtelocentric chromosome pair, a pattern common in a number of other Leuciscinae. FISH with rDNA probe produced consistently positive hybridization signals detected in the same regions indicated by Ag-staining and CMA3-fluorescence. The distribution of C-positive heterochromatin was identical in both species, including a conspicuous size polymorphism of heterochromatic blocks in the largest metacentric and subtelo- to acrocentric chromosomal pairs. No heteromorphic sex chromosomes were detected. A single analyzed individual of V. melanops possessed the same karyotype and NOR phenotype as V. vimba and V. elongata. The apparent karyotype homogeneity and chromosomal characteristics of ribosomal DNA in all three species of the genus Vimba is consistent to that found in most other representatives of the European leuciscine cyprinid fishes.

chromosome banding cytotaxonomy of Vimba FISH karyotype NOR phenotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, C.T. & J.R. Gold, 1986. Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia 1986: 226–231.Google Scholar
  2. Aref' ev, V.A. & G.I. Karnauchov, 1989. Species-specificity of electrophoretic patterns of haemoglobin and uniformity of karyotypes in fishes, genus Abramis. Biochem. Syst. Ecol. 17: 479–488.Google Scholar
  3. Balon, E.K., S.S. Crawford & A. Lelek, 1987. Are there sympatric forms of Vimba Fitzinger 1873 in the Danube near the future connection of the Main River? (Pisces: Cyprinidae). Senck. Biol. 67: 231–248.Google Scholar
  4. Bănărescu, P., 1992. Zoogeography of Fresh Waters. Vol. 2, Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Aula, Wiesbaden.Google Scholar
  5. Bănărescu, P., M. Papadopol & G. Müller, 1963. La genre Vimba (Pisces, Cyprinidae) dans le basin du Danube. Trav. Mus. Hist. Grigore Antipa 4: 381–400.Google Scholar
  6. Bănărescu, P., M. Papadopol & L. Mikhailova, 1970. Systematics. pp. 23–70 in Biology and Fisheries of Vimba in Europe, edited by P. Zayanchkauskas et al. Mintis Press, Vilnius (in Russian, English summary).Google Scholar
  7. Barshiene, J.V., V.R. Zhilkujene, E.J. Rauckis, R.T. Repetchka, V.V. Stankjavitchus & V.S. Shinderite, 1983. Some results of cytogenetical, biochemical, parasitological studies and studies on thermal resistance of muscle tissues in vimba and bream. pp. 137–152 in Species and its Productivity in its Areal. Nauka Press, Moscow (in Russian).Google Scholar
  8. Bogutskaya, N.G., 1990. Morphological bases of the system of the cyprinids from the subfamily Leucisinae 2. Vopr. Ichthiol. 30: 920–933 (in Russian).Google Scholar
  9. Boroń, A., 2001. Comparative chromosomal studies on two fish, Phoxinus phoxinus (Linnaeus, 1758) and Eupallasella perenurus (Pallas, 1814): an associated cytogenetic-taxonomic consideration. Genetica 111: 387–395.Google Scholar
  10. Buth, D.G., T.E. Dowling & J.R. Gold, 1991. Molecular and cytological investigations. pp. 83–126 in Cyprinid Fishes - Systematics, biology and exploitation, edited by I.J. Windfield and J.S. Nelson, Chapman & Hall, London.Google Scholar
  11. Collares-Pereira, M.J. & P. Ráb, 1999. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae) - re-examination by FISH. Genetica 105: 301–303.Google Scholar
  12. Collares-Pereira, M.J., M.I. Próspero, M.I. Biléu & E.M. Rodrigues, 1998. Leuciscus (Pisces, Cyprinidae) karyotypes: transect of Portuguese populations. Gen. Mol. Biol. 21: 63–69.Google Scholar
  13. Gornung, E., I. Gabrielli, S. Cataudella & L. Sola, 1997. CMA(3)-banding pattern and fluorescence in situ hybridization with 18S rRNA genes in zebrafish chromosomes. Chrom. Res. 5: 40–46.Google Scholar
  14. Haaf, T. & M. Schmid, 1984. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma 89: 37–41.Google Scholar
  15. Hanfling, B. & R. Brandl, 2000. Phylogenetics of European cyprinids: insights from allozymes. J. Fish Biol. 57(2): 265–276.Google Scholar
  16. Howell, W.M. & A.D. Black, 1980. Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1–step method. Experientia 36: 1014–1015.Google Scholar
  17. Jankun, M., D. Kucharczyk, P. Woznicki & A. Kotik, 1997. Chromosome study of Abramis brama (L.) from Lake Kortowskie, Poland. Cytobios 90: 175–179.Google Scholar
  18. Kottelat, M., 1997. European freshwater fishes. Biologia 52(Suppl. 5): 1–271.Google Scholar
  19. Levan, A., K. Fredga & A.A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.Google Scholar
  20. Mayr, B., P. Ráb & M. Kalat, 1985. Localization of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae). Genetica 67: 51–56.Google Scholar
  21. Mayr, B., P. Ráb & M. Kalat, 1986. NORs and counterstainenhanced fluorescence studies in Cyprinidae of different ploidy level. Genetica 69: 111–118.Google Scholar
  22. Ozouf-Costaz, C., E. Pisano, C. Bonillo & R. Williams, 1996. Ribosomal RNA location in the Antarctic fish Champsocephalus gunnari (Notothenioidei, Channichthyidae) using banding and fluorescence in situ hybridization. Chrom. Res. 4: 557–561.Google Scholar
  23. Ráb, P. & M.J. Collares-Pereira, 1995. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes): a review. Folia Zool. 44: 193–214.Google Scholar
  24. Ráb, P. & R. Roth, 1988. Cold-blooded vertebrates, pp. 115–124 in Methods of Chromosome Analysis, edited by P. Balíček, J. Forejt & J. Rubeš. Cytogenet. Sect. Cs. Biol. Soc. Publishers, Brno.Google Scholar
  25. Ráb, P., P. Roth & V.A. Aref'ev, 1990. Chromosome studies in European leuciscine fishes (Pisces, Cyprinidae). Karyotype of Aspius aspius. Caryologia 43: 249–256.Google Scholar
  26. Ráb, P., Y. Karakousis, M. Rábová &P.S. Economidis, 1996a. Banded karyotype of cyprinid fish Leuciscus borysthenicus. Ichthyol. Res. 43: 463–468.Google Scholar
  27. Ráb, P., K.M. Reed, F.A. Ponce de Leon & R.B. Phillips, 1996b. A new method for detecting nucleolus organizer regions in fish chromosomes using denaturation and propidium iodide staining. Biotech. Histochem. 71: 157–162.Google Scholar
  28. Ráb, P., M. Rábová, K.M. Reed & R.B. Phillips, 1999. Chromosomal characteristics of ribosomal DNA in the primitive semionotiform fish, longnose gar Lepisosteus osseus. Chrom. Res. 7: 475–480.Google Scholar
  29. Ráb, P., M. Rábová, P.S. Economidis & C. Triantaphyllidis, 2000. Banded karyotype of Greek endemic cyprinid fish. Pachychilon macedonicum. Ichthyol. Res. 47: 107–110.Google Scholar
  30. Reed, K.M. & R.B. Phillips, 1995. Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet. Cell Genet. 70: 104–107.Google Scholar
  31. Rodriguez, E. & M.J. Collares-Pereira, 1999. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae). Genetica 98: 59–63.Google Scholar
  32. Rudek, Z., 1974. Karyological investigations of two forms of Vimba vimba (Linnaeus, 1758) occurring in Poland. Folia Biol. (Krakow) 22: 211–215.Google Scholar
  33. Schinderite, V.S. & V.P. Vasil'ev, 1976. Karyotype of Vimba vimba (L.). Vopr. Ichtiol. 16: 366–368 (in Russian)Google Scholar
  34. Schmid, M. & M. Guttenbach, 1988. Evolutionary diversity of reverse (R) fluorescent bands in vertebrates. Chromosoma 97: 327–344.Google Scholar
  35. Sola, L., A.R. Rossi, V. Iaselli, E.M. Rasch & P.J. Monaco, 1992. Cytogenetics of bisexual/species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions unisexual in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, Chromomycin A, and silver staining. Cytogenet. Cell Genet. 60: 229–235.Google Scholar
  36. Takai, A. & Y. Ojima, 1992. Chromosomal distribution of nucleolus organizer regions in Japanese cyprinid fish. Cytobios 71: 7–17.Google Scholar
  37. Uiblein, F. & H. Winkler, 1994. Morphological variability among Vimba in Austria waters: quantitative examination of a taxonomic and a functional hypothesis (Pisces: Cyprinidae). Senck. Biol. 73: 57–65.Google Scholar
  38. Vasil'ev, V.P., 1985. Evolutionary Karyology of Fishes. Nauka Press, Moscow, p. 300 (in Russian).Google Scholar
  39. Zardoya, R., P.S. Economidis & I. Doadrio, 1999. Phylogenetic relationships of Greek Cyprinidae: molecular evidence for at least two origins of the Greek cyprinid fauna. Mol. Phylogenet. Evol. 13: 122–131.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Rábová
    • 1
  • P. Ráb
    • 1
  • C. Ozouf-Costaz
    • 2
  • C. Ene
    • 3
  • J. Wanzeböck
    • 4
  1. 1.Laboratory of Fish Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
  2. 2.Service Commun de Systématique Moléculaire (CNRS FR 1541) & Laboratoire d'Ichtyologie Generale et AppliqueéMuseum National d'Histoire NaturelleParis Cedex 05France
  3. 3.Danube Delta InstituteTulceaRoumania
  4. 4.Institute of LimnologyAustrian Academy of SciencesMondseeAustria

Personalised recommendations