Skip to main content
Log in

On General Plane Fronted Waves. Geodesics

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A general class of Lorentzian metrics, \(\mathcal{M}_0 \times \mathbb{R}^2 \), \(\langle \cdot ,\; \cdot \rangle _z = \langle \cdot ,\; \cdot \rangle _x + 2\;\;du\;\;dv + H(x,u)\;du^2 \), with \((\mathcal{M}_0 ,\;\langle \cdot ,\; \cdot \rangle _x )\) any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity causal character of connecting geodesics. These results are independent of the possibility of a full integration of geodesic equations. Variational and geometrical techniques are applied systematically. In particular, we prove that the asymptotic behavior of H(x,u) with x at infinity determines many properties of geodesics. Essentially, a subquadratic growth of H ensures geodesic completeness and connectedness, while the critical situation appears when H(x,u) behaves in some direction as \(|{\kern 1pt} x{\kern 1pt} |^2 \), as in the classical model of exact gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avez, A. (1963). Ann. Inst. Fourier 13, 105-190.

    Google Scholar 

  2. Barrabes, C., and Hogan, P. A. (1994). Phys. Rev. D 50, 6312-6317.

    Google Scholar 

  3. Beem, J. K., Ehrlich, P. E., and Easley, K. L. (1996). Global Lorentzian geometry, Monographs Textbooks Pure Appl. Math. 202, Dekker Inc., New York.

    Google Scholar 

  4. Benci, V., and Fortunato, D. (1994). Adv. Math. 105, 1-25.

    Google Scholar 

  5. Benci, V., Fortunato, D., and Giannoni, F. (1991). Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 79-102.

    Google Scholar 

  6. Bini, D., Ferrari, V., and Ibáñez, J. (1989). Nuovo Cimento B 103, 29-44.

    Google Scholar 

  7. Bonnor, W. B., and Piper, M. S. (1997). Class. Quant. Gravity 14, 2895-2904.

    Google Scholar 

  8. Brinkmann, H. (1925). Math. Ann. 94, 119-145.

    Google Scholar 

  9. Candela, A. M., Flores, J. L., and Sánchez, M. (2002). A quadratic Bolza–type problem in a Riemannian manifold.

  10. Cespedes, J., and Verdaguer, E. (1987). Phys. Rev. D 36, 2259-2266.

    Google Scholar 

  11. Ebin, D. (1970). J. Differential Equation. Proc. Amer. Math. Soc. 26, 632-634.

    Google Scholar 

  12. Ehrlich, P. E., and Emch, G. G. (1992). Rev. Math. Phys. 4, 163-221.

    Google Scholar 

  13. Ehrlich, P. E., and Emch, G. G. (1992). Lecture Notes in Pure and Appl. Math. 144, 203-212.

    Google Scholar 

  14. Ehrlich, P. E., and Emch, G. G. (1993). Proc. Symp. Pure Math. 54, 203-209.

    Google Scholar 

  15. Einstein, A., and Rosen, N. (1937). J. Franklin Inst. 223, 43-54.

    Google Scholar 

  16. Ezawa, Y., and Soda, J. (1994). Phys. Lett. B 335, 131-135.

    Google Scholar 

  17. Fadell, E., and Husseini, S. (1991). Nonlinear Anal. TMA 17, 1153-1161.

    Google Scholar 

  18. Flores, J. L., and Sánchez, M. Causality and conjugate points in general plane waves. Preprint, gr-qc 0211086.

  19. Gordon, W. B. (1970). Proc. Amer. Math. Soc. 26, 329-331.

    Google Scholar 

  20. Griffiths, J. B. (1993). Class. Quant. Grav. 10, 975-983.

    Google Scholar 

  21. Hawking, S. W., and Ellis, G. F. R. (1973). The large scale structure of space–time, Cambridge University Press, London.

    Google Scholar 

  22. Hogan, P. A. (1992). Phys. Lett. A 171, 21-22.

    Google Scholar 

  23. Kramer, D. (1999). Class. Quant. Gravity 16, L75-L78.

    Google Scholar 

  24. Masiello, A. (1994). Variational methods in Lorentzian geometry, Pitman Res. Notes Math. Ser. 309, Longman Sci. Tech., Harlow.

    Google Scholar 

  25. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, W. H. Freeman & Co., San Francisco, California.

    Google Scholar 

  26. O'Neill, B. (1983). Semi-Riemannian geometry with applications to Relativity, Academic Press Inc., New York.

    Google Scholar 

  27. Palais, R. S. (1966). Topology 5, 115-132.

    Google Scholar 

  28. Penrose, R. (1965). Rev. Modern Phys. 37, 215-220.

    Google Scholar 

  29. Romero, A., and Sánchez, M. (1994). J. Math. Phys. 35, 1992-1997.

    Google Scholar 

  30. Sánchez, M. (2001). Nonlinear Anal. 47, 3085-3102.

    Google Scholar 

  31. Sánchez, M. (1997). Trans. Amer. Math. Soc. 349, 1063-1080.

    Google Scholar 

  32. Seifert, H. J. (1967). Z. Naturforsch. 22a, 1356-1360.

    Google Scholar 

  33. Weinstein, A., and Marsden, J. (1970). Proc. Amer. Math. Soc. 26, 629-631.

    Google Scholar 

  34. Yurtsever, U. (1988). Phys. Rev. D 37, 2803-2817.

    Google Scholar 

  35. Zareyan, M. (1997). Gen. Relat. Gravit. 29, 613-620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, A.M., Flores, J.L. & Sánchez, M. On General Plane Fronted Waves. Geodesics. General Relativity and Gravitation 35, 631–649 (2003). https://doi.org/10.1023/A:1022962017685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022962017685

Navigation