Skip to main content
Log in

A Photosynthesis-Based Dry Deposition Modeling Approach

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V d) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT)model. For this, a photosynthesis-based surface evapotranspirationand gas exchange model is dynamically coupled to an atmospheric model with prognostic soil hydrology andsurface energy balance. The effective surface resistance(composed of aerodynamic, boundary layer, and canopy-basedresistances) is calculated for a realistic and fully interactiveestimation of gaseous deposition velocity over natural surfaces.Based on this coupled framework, the photosynthesis-based gasdeposition approach is evaluated using observed depositionvelocity estimates for ozone over a soybean field (C3photosynthesis pathway) and a corn field (C4 photosynthesispathway). Overall, observed V d and modeled V d show good qualitative and quantitative agreement.Results suggest that photosynthesis-based physiologicalapproaches can be adopted to efficiently develop depositionvelocity estimates over natural surfaces. Such a physiologicalapproach can also be used for generalizing results from fieldmeasurements and for investigating the controlling relationshipsamong various atmospheric and surface variables in estimatingdeposition velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alapaty, K., Pleim, J. E., Raman, S., Niyogi, D. S. and Byun, D.: 1997, ‘Simulation of atmospheric boundary layer processes using local-and nonlocal-closure schemes’, J. Appl. Meteor. 36, 214- 233.

    Google Scholar 

  • Anthes, R., Hsie, E. and Kuo, Y.: 1987, ‘Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4)’, NCAR Tech. Note NCAR/TN-282 + STR, 66 pp.

  • Arya, S. P. S.: 1988, Introduction to Micrometeorology, Academic Press, San Diego, 308 pp.

    Google Scholar 

  • Avissar, R., Avissar, P., Mehrer, Y. and Bravdo, B.: 1985, ‘A model to simulate response of plant stomata to environmental conditions’, Agric. For. Meteorol. 34, 21-29.

    Google Scholar 

  • Baldocchi, D., Hicks, B. B. and Camara, P.: 1988, ‘A canopy stomatal resistance model for gaseous deposition to vegetated surfaces’, Atmos. Environ. 21, 91-101.

    Google Scholar 

  • Ball, J., Woodrow, I. and Berry, J.: 1987, ‘A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis under Different Environmental Conditions’, in Progress in Photosynthesis Research, Vol. IV, Martinus Nijhoff Pub., Dordrecht, pp. 221-224.

    Google Scholar 

  • Businger, J., Wyngaard, J., Izum, Y. and Bradley, E.: 1971, ‘Flux-profile relationship in the atmospheric surface layer’, J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • Calvet, J.-C., Noilhan, J., Roujean, J., Bessemoulin, P., Cabelguenne, M., Olioso, A. and Wigneron, J.: 1998, ‘An interactive vegetation SVAT model tested against data from six contrasting sites’, Agric.-Forest. Meteor. 92, 73-95.

    Google Scholar 

  • Calvet, J.-C., Bessemoulin, P., Noilhan, J., Berne, C., Braud, I., Courault, D., Fritz., N., Gonzalez-Sosa, E., Goutorbe, J., Haverkamp, R., Jaubert, G., Kergoat, L., Lachaud, G., Laurent, J., Mordelet, P., Olioso, A., Peris, P., Roujean, J., Thony, J., Tosca, C., Vauclin, M. and Vignes, D.: 1999, ‘MUREX: A land-surface field experiment to study the annual cycle of the energy and water budgets’, Ann. Geophys. 17, 838-854.

    Google Scholar 

  • Chang, J., Brost, R., Isaksen, I., Madronich, P., Middleton, P., Stockwell, W. and Walcek, C.: 1987, ‘A three-dimensional eulerian acid deposition model: Physical concepts and formulation’, J. Geophys. Res. 92, 14681-14700.

    Google Scholar 

  • Collatz, G. J., Ball, J., Grivet, C. and Berry, J.: 1991, ‘Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer’, Agri. For. Meteor. 54, 107-136.

    Google Scholar 

  • Collatz, G. J., Ribas-Carbo, M. and Berry, J.: 1992, ‘Coupled photosynthesis-stomatal conductance model for leaves of C4 plants’, Aust. J. Plant Physiol. 19, 519-538.

    Google Scholar 

  • Cooter, E. J. and Schwede D.: 2000, ‘Sensitivity of the national oceanic and atmospheric administration multiplayer model to instrument error and parameterization uncertainty’, J. Geophys. Res. 105, 6695-6704.

    Google Scholar 

  • Davenport, A., Grimmond, S., Oke, T. and Wieringa, J.: 2000, ‘Estimating the Roughness of Cities and Sheltered Country’, 12th AMS Conference on Applied Climatology, Asheville, NC, 8-11 May 2000, Amer. Meteor. Soc., Boston, MA, pp. 96-99.

    Google Scholar 

  • Draxler, R. R. and Hess, G.: 1997, ‘Description of the HySplit-4 Modeling System’, NOAA Tech. Mem. ERL/ARL-224 (Available from http://www.arl.noaa.gov/READY).

  • Erisman, J., Beier, C., Draaijers, G. and Lindberg, S.: 1994, ‘Review of deposition monitoring methods’, Tellus 46, 79-93.

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S. and Berry, J.: 1980, ‘A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species’, Planta 149, 78-90.

    Google Scholar 

  • Finkelstein, P., Ellestad, T., Clarke, J., Meyers, T., Schwede, D., Hebert, E. and Neal, J.: 2000, ‘Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation’, J. Geophys. Res. 105, 15365-15378.

    Google Scholar 

  • Fowler, D., Flechard, C., Sutton, M. and Storeton-West, R.: 1998, ‘Long-term measurements of the land-atmosphere exchange of ammonia over moorland’, Atmos. Eviron. 32, 453-459.

    Google Scholar 

  • Garland, J.: 1977, ‘The dry deposition of sulphur dioxide to land and water surfaces’, Proc. Roy. Soc. Lond. 534A, 245-268.

    Google Scholar 

  • Giorio, P., Sorrentino, G. and d'Andria, R.: 1999, ‘Stomatal behaviour, leaf wetness status and photosynthetic response in field-grown olive trees under water deficit’, Environ. Expt. Bot. 42, 95-104.

    Google Scholar 

  • Hampp, R.: 1992, ‘Comparative evaluation of the effects of gaseous pollutants, acidic deposition and mineral deficiencies on the carbohydrate metabolism of trees’, Ag. Ecosys. Econ. 42, 333-351.

    Google Scholar 

  • Hicks, B. B., and Matt, D.: 1988, ‘Combining biology, chemistry, and meteorology in modeling and measuring dry deposition’, J. Atmos. Chem. 6, 117-131.

    Google Scholar 

  • Hoke, J., Phillips, N., DiMego, G., Tuccillo, J. and Sela, J.: 1989, ‘The regional analysis and forecast system of the National Meteorological Center’, Weather and Forecasting 4, 323-334.

    Google Scholar 

  • Jarvis, P.: 1976, ‘The interpretation of leaf water potential and stomatal conductance found in canopies in the field’, Phil. Trans. R. Soc. Lond B 273, 593-610.

    Google Scholar 

  • Kramm, G., Beier, N., Foken, T., Muller, H., Schroder, P. and Seiler, W.: 1996, ‘A SVAT for NO, NO2, and O3-model description and test results’, Meteor. Atmos. Physics 61, 89-106.

    Google Scholar 

  • Makela, A., Berninger, F. and Hari, P.: 1996, ‘Optimal control of gas exchange during drought: Theoretical analysis’, Ann. Bot. 77, 461-467.

    Google Scholar 

  • Meyers, T., Finkelstein, P., Clarke, J., Ellestad, T. and Sims, P.: 1998, ‘A multilayer model for inferring dry deposition using standard meteorological measurements’, J. Geophys. Res. 103, 22645-22661.

    Google Scholar 

  • Mellor, R. and Yamada, T.: 1974, ‘A hierarchy of turbulence closure models for planetary boundary layers’, J. Atmos. Sci. 31, 1791-1806.

    Google Scholar 

  • Musselman, R. and Minnick, T.: 2000, ‘Nocturnal stomatal conductance and ambient air quality standards for ozone’, Atmos. Environ. 34, 719-733.

    Google Scholar 

  • NCDENR: 1999, Air Quality Research Needs and Programs in North Carolina, Division of Air Quality, North Carolina Department of Environment and Natural Resources, Raleigh, NC, 57 pp.

    Google Scholar 

  • NRC: 2000, Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution, National Research Council, National Academy Press, Washington, DC, 405 pp.

    Google Scholar 

  • Nemitz, E., Sutton, M., Gut, A., Jose, R., Husted, S. and Schjoerring, J.: 2000, ‘Sources and sinks of ammonia within an oilseed rape canopy’, Agric. Forest Meteor. 105, 385-404.

    Google Scholar 

  • Nikolov, N., Massman, W. and Schoettle, A.: 1995, ‘Coupling biochemical and biosphysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants’, Ecol. Mod. 80, 205-235.

    Google Scholar 

  • Niyogi, D. S.: 2000, ‘Biosphere-Atmosphere Interactions Coupled with Carbon Dioxide and Soil Moisture Changes’, Ph.D. Dissertation, Dept. of Marine, Earth, and Atmos. Sci., North Carolina State University, Raleigh, NC 27695, 509 p.

    Google Scholar 

  • Niyogi, D. S. and Raman, S.: 1997, ‘Comparison of four different stomatal resistance schemes using FIFE observations’, J. Appl. Meteor. 36, 903-917.

    Google Scholar 

  • Niyogi, D. S. and Raman, S.: 2000, ‘Numerical Modeling of Gas Deposition and Bi-directional Surface-Atmosphere Exchanges in Mesoscale Air Pollution Systems’, in Z. Boybeyi (ed.), Mesoscale Dispersion Modeling, Computational Mechanics Publications, Southampton, U.K., 424 p.

    Google Scholar 

  • Niyogi, D. S., Raman, S. and Alapaty, K.: 1998, ‘Comparison of four different stomatal resistance schemes using FIFE observations, Part 2: Analysis of terrestrial biospheric-atmospheric interactions’, J. Appl. Meteor. 37, 1301-1320.

    Google Scholar 

  • Niyogi, D. S., Alapaty, K. and Raman, S.: 1999b, ‘An Advanced Carbon Assimilation Surface Evapotranspiration Scheme for Mesoscale Models’, MM5 Workshop on Land Surface Modeling and its Application to Mesoscale Models, 24-25 June 1999, Boulder, CO.

  • Niyogi, D. S., Alapaty, K. and Raman, S.: 1999c, ‘Developing Multi-media Couplings to Link Ambient Meteorological Information with Depositing Surface Environment’, Workshop on Atmospheric Nitrogen Compounds: Emissions Transport, Transformation, Deposition, and Assessment, 7-9 June 1999, Chapel Hill, NC, pp. 355-371.

    Google Scholar 

  • Niyogi, D. S., Raman, S. and Alapaty, K.: 1999d, ‘Uncertainty in specification of surface characteristics, Part 2: Hierarchy of interaction explicit statistical analysis’, Bound.-Layer Meteor. 91, 341-366.

    Google Scholar 

  • Niyogi, D. S., Raman, S., Alapaty, K. and Hopkins, T.: 1999a, ‘An Integrated Dynamic, Physiochemical Approach to Assessing the Transport and Deposition of Chemical Species in Eastern North Carolina’, Workshop on Atmospheric Nitrogen Compounds: Emissions Transport, Transformation, Deposition, and Assessment, 7-9 June 1999, Chapel Hill, NC., pp. 383-396.

    Google Scholar 

  • Niyogi, D. S., Alapaty, K. and Raman, S.: 2000, ‘A gas exchange based surface evapotranspiration model (GEM) for mesoscale applications’, Agric. For. Meteorol. (submitted).

  • Noilhan, J. and Planton, S.: 1989, ‘A simple parameterization of land surface processes for meteorological models’, Mon. Wea. Rev. 117, 536-549.

    Google Scholar 

  • Padro, J.: 1994, ‘Observed Characteristics of the dry deposition velocity of O3 and SO2 above a wet deciduous forest’, Sc. Tot. Environ. 146/147, 395-400.

    Google Scholar 

  • Pleim, J. and Xiu, A.: 1995, ‘Development and testing of a surface flux planetary boundary layer model with explicit soil moisture parameterization for applications in mesoscale models’, J. Appl. Meteor. 34, 16-32.

    Google Scholar 

  • Rondon, A. and Grana, L.: 1994, ‘Studies on the dry deposition of NO2 to coniferous species at low NO2 concentrations’, Tellus 46B, 339-352.

    Google Scholar 

  • Schulze, E., Kelliher, F., Korner, C., Lloyd, J. and Leuning, R.: 1994, ‘Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise’, Annu. Rev. Ecol. Syst. 25, 629-660.

    Google Scholar 

  • Sellers, P., Hall, F., Asrar, G., Strebel, D. and Murphy, R.: 1988, ‘The first ISLSCP experiment (FIFE)’, Bull. Amer. Meteor. Soc. 69, 22-27.

    Google Scholar 

  • Sellers, P., Randall, D., Collatz, J., Berry, J., Field, C., Dazlich, D., Zhang, C., Collelo, G. and Bounous, A.: 1996, ‘A revised land surface parameterization (SiB2) for atmospheric GCMs: Model formulation’, J. Clim. 9, 676-705.

    Google Scholar 

  • Shaw, R. and Periera, A.: 1982, ‘Aerodynamic roughness of plant canopy: A numerical experiment’, Agric. Meteor. 26, 51-65.

    Google Scholar 

  • Su, H., Paw, U. K. and Shaw, R.: 1996, ‘Development of a coupled leaf and canopy model for the simulation of plant-atmosphere interaction’, J. Appl. Meteorol. 35, 734-748.

    Google Scholar 

  • Sutton, M., Burkhardt, J., Guerin, D., Nemitz, E. and Fowler, D.: 1998, ‘Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange’, Atmos. Environ. 32, 473-480.

    Google Scholar 

  • Valigura, R., Alexander, R., Brock, D., Castro, M., Meyers, T., Paerl, H., Stacey, P. and Stanley, D. (eds.): 2000, An Assessment of Nitrogen Inputs to Coastal Areas with an Atmospheric Perspective, AGU Coastal Estuaries Series, American Geophysical Union, Washington DC, 252 pp.

    Google Scholar 

  • Walmsley, P. and Wesely, M.: 1996, ‘Modification of coded parameterizations of surface resistances to gaseous dry deposition’, Atmos. Environ. 30, 1181-1196.

    Google Scholar 

  • Wesely, M.: 1989, ‘Parameterization of surface resistance to gaseous dry deposition in regional scale numerical models’, Atmos. Environ. 23, 1293-1304.

    Google Scholar 

  • Wesely, M. and Hicks, B.: 2000, ‘A review of the current status of knowledge on dry deposition’, Atmos. Environ. 34, 2261-2282.

    Google Scholar 

  • Wieringa, J.: 1993, ‘Representative roughness parameters for homogeneous terrains’, Bound.-Layer Meteor. 63, 323-363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Dutta S. Niyogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niyogi, D.D.S., Alapaty, K. & Raman, S. A Photosynthesis-Based Dry Deposition Modeling Approach. Water, Air, & Soil Pollution 144, 171–194 (2003). https://doi.org/10.1023/A:1022955220354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022955220354

Navigation