Skip to main content
Log in

Quantum Thermal Effect of Nonstationary Kerr-Newman Black Hole

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hawking radiation and the entropy of non-stationary Kerr-Newman black hole whose metric changes slowly are calculated via the method of Damour etc. and the thin film brick-wall model. First, we obtain the Hawking radiation temperature and the thermal spectrum formula. Second, we get the entropy density at every point of the horizon surface as well as the total entropy of the black hole, which is just the Bekenstein-Hawking entropy and relies on the notion of the local equilibrium crucially that can be met if the evaporation and the accretion of the black hole is negligible. The results show that the temperature of the event horizon depends on the time and the angle, and the entropy of the non-stationary black hole is also proportional to the horizon area with appropriate cutoff relationship as in the case of stationary black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S. W. (1974). Nature, (London), 248, 30

    Google Scholar 

  2. Hawking, S. W. (1975). Commun. Math. Phys. 43, 199.

    Google Scholar 

  3. Bekenstein, J. D. (1973). Phys. Rev. D 7, 2333

    Google Scholar 

  4. Bekenstein, J. D. (1974). Phys. Rev. D 9, 3292.

    Google Scholar 

  5. York, J. W. (1983). Phys. Rev. D 28, 2929.

    Google Scholar 

  6. Frolov, V., and Novikov, I. (1993). Phys. Rev. D 48, 4545.

    Google Scholar 

  7. Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K. (1998). Phys. Rev. Lett. 80, 904.

    Google Scholar 

  8. Strominger, A., and Vafa, C. (1996). Phys. Lett. B 379, 99.

    Google Scholar 

  9. Maldacena, J. M., and Strominger, A. (1996). Phys. Rev. Lett., 77, 428

    Google Scholar 

  10. Horowitz, G. T., Lowe, D. A., Maldacena, J. M. (1996). Phys. Rev. Lett. 77, 430.

    Google Scholar 

  11. Tae Kim, Won, J. Oh, John, and Park, Young-Jai. (2001). Phys. Lett. B 512, 131.

    Google Scholar 

  12. 't. Hooft, G. (1985). Nucl. Phys. B 256, 727.

    Google Scholar 

  13. Xiang, Li, and Zhao Zheng (2000). Phys. Rev. D 62, 104001.

    Google Scholar 

  14. Liu Wenbiao, and Zhao Zheng (2001). Chin. Phys. Lett. 18, 345.

    Google Scholar 

  15. Gao Changjun, and Shen Yougen (2001). Chin. Phys. Lett. 18, 1167.

    Google Scholar 

  16. Birrell, N. D., and Davies, P. C. W. (1982). Quantum Field in Curved Space. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Jing Jiliang (1988). Int. J. Theor. Phys. 37, 1441.

    Google Scholar 

  18. Damour, T., and Ruffini, R. (1976). Phys. Rev. D 14, 332.

    Google Scholar 

  19. Sannan, S. (1988). Gen. Rel. Grav. 20, 239.

    Google Scholar 

  20. Zhao Zheng, Luo Zhiqiang, and Dai Xianxin (1994). IL Nuovo Cimento 109B, 483.

    Google Scholar 

  21. Zhao Zheng, and Dai Xianxin (1991). Chin. Phys. Lett. 8, 548.

    Google Scholar 

  22. Zhao Zheng, Zhang Jianhua, and Zhu Jianyang (1995). Inter. J. Theor. Phys. 34, 2039.

    Google Scholar 

  23. Sun Mingchao, Zhao Ren, and Zhao Zheng (1995). IL Nuovo Cimento 110B, 829.

    Google Scholar 

  24. He Han, Zhao Zheng, and Zhang Lihua (2002). Inter. J. Theor. Phys. 41, 1801.

    Google Scholar 

  25. Jing Jiliang and Wang Yongjiu (1996). Inter. Theor. Phys. 35, 1481.

    Google Scholar 

  26. Li Zhongheng, and Zhao Zheng (1997). Acta Physica Sinica 46, 1273.

    Google Scholar 

  27. Min-Ho, Lee, and Won T Kim, (1996). Phys. Rev. D 54, 3904.

    Google Scholar 

  28. Susskind, L., and Uglum, J. (1994). Phys. Rev. D 50, 2700.

    Google Scholar 

  29. Demer, J. G., Lafrance, R., and Myers, R. (1995). Phys. Rev. D 52, 2245.

    Google Scholar 

  30. Romeo, A. (1996). Class. Quantum Grav. 13, 2797.

    Google Scholar 

  31. Garattini, R. (2001). Class. Quantum Grav. 18, 571.

    Google Scholar 

  32. Ho, J., Kim, W. T., Park, Y.-J., Shin, H. (1997). Class. Quantum Grav. 14, 2617.

    Google Scholar 

  33. Zhao Zheng, Zhang Jianhua and Zhu Jianyang (1995). Inter. J. Theor. Phys. 34, 2039.

    Google Scholar 

  34. Kreuzer, H. J. (1981). Nonequilibrium Thermodynamics and its Statistical Foundations. Oxford: Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., He, H. & Zhao, Z. Quantum Thermal Effect of Nonstationary Kerr-Newman Black Hole. General Relativity and Gravitation 35, 579–594 (2003). https://doi.org/10.1023/A:1022953815868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022953815868

Navigation