Abstract
Biosilicification results in the formation of ornate silica structures, which are seen in diatoms, sponges, grasses and other biological systems. Proteins have been isolated from diatoms, sponges and grasses that are proposed to be responsible for biosilicification and have been sequenced and/or some of the key amino acids identified. Studies of the amino acids primary sequence in these proteins suggest that lysine, histidine, arginine, cysteine, proline and serine probably play a role in biosilicification. Homopolymers of lysine, arginine and proline have been shown to form silica structures in vitro at (or close to) neutral pH. Here we report, for the first time, the ability of poly-L-histidine (PLHis) to form silica structures from a silica precursor at neutral pH. It was observed by scanning electron microscopy that PLHis facilitates the formation of silica spheres in the size range 150–200 nm and interconnected structures make up relatively smaller particles.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
T. L. Simpson and B. E. Volcani, eds., Silicon and Siliceous Structures in Biological Systems (New York, Springer-Verlag, 1981).
N. Kroger, R. Deutzmann, and M. Sumper, Science 286, 1129(1999).
K. Shimizu, J. N. Cha, G. D. Stucky, and D. E. Morse, PNAS 95, 6234(1998).
C. C. Harrison (formerly Perry), Phytochemistry 41(1), 37(1996).
S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(3), 193(2001).
S. V. Patwardhan and S. J. Clarson, Silicon Chemistry 1(3), 207-214 (2002).
S. V. Patwardhan and S. J. Clarson, unpublished data.
T. Coradin and J. Livage, Colloids and Surfaces B: Biointerfaces 21, 329(2001).
T. Coradin, O. Durupthy, and J. Livage, Langmuir 18(6), 2331(2002).
T. Coradin, C. Roux, and J. Livage, J. Mater. Chem. 12, 1242(2002).
L. Sudheendra and A. R. Raju, Materials Research Bulletin 37, 151(2002).
R. R. Naik, L. L. Brott, S. J. Clarson, and M. O. Stone, Journal of Nanoscience and Nanotechnology 2(1), 95 (2002).
J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, and D. E. Morse, PNAS 96, 361 (1999).
S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Silicon Chemistry 1(1), 47(2002).
S. J. Clarson, P. W. Whitlock, S. V. Patwardhan, L. L. Brott, R. R. Naik, and M. O. Stone, Polymeric Materials: Science & Engineering, 81 (2002).
L. L. Brott, D. J. Pikas, R. R. Naik, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Nature 413, 291 (2001).
S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Polymer Bulletin 48(4-5), 367 (2002).
R. Tacke, Angew. Chem. Int. Ed. 38(20), 3015(1999).
J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, Nature 403, 289 (2000).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Patwardhan, S.V., Clarson, S.J. Silicification and Biosilicification. Part 6. Poly-L-Histidine Mediated Synthesis of Silica at Neutral pH. Journal of Inorganic and Organometallic Polymers 13, 49–53 (2003). https://doi.org/10.1023/A:1022952931063
Issue Date:
DOI: https://doi.org/10.1023/A:1022952931063