Advertisement

Silicification and Biosilicification. Part 6. Poly-L-Histidine Mediated Synthesis of Silica at Neutral pH

  • Siddharth V. Patwardhan
  • Stephen J. Clarson
Article

Abstract

Biosilicification results in the formation of ornate silica structures, which are seen in diatoms, sponges, grasses and other biological systems. Proteins have been isolated from diatoms, sponges and grasses that are proposed to be responsible for biosilicification and have been sequenced and/or some of the key amino acids identified. Studies of the amino acids primary sequence in these proteins suggest that lysine, histidine, arginine, cysteine, proline and serine probably play a role in biosilicification. Homopolymers of lysine, arginine and proline have been shown to form silica structures in vitro at (or close to) neutral pH. Here we report, for the first time, the ability of poly-L-histidine (PLHis) to form silica structures from a silica precursor at neutral pH. It was observed by scanning electron microscopy that PLHis facilitates the formation of silica spheres in the size range 150–200 nm and interconnected structures make up relatively smaller particles.

Biomineralization biosilica silica histidine poly-L-histidine sol-gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. L. Simpson and B. E. Volcani, eds., Silicon and Siliceous Structures in Biological Systems (New York, Springer-Verlag, 1981).Google Scholar
  2. 2.
    N. Kroger, R. Deutzmann, and M. Sumper, Science 286, 1129(1999).Google Scholar
  3. 3.
    K. Shimizu, J. N. Cha, G. D. Stucky, and D. E. Morse, PNAS 95, 6234(1998).Google Scholar
  4. 4.
    C. C. Harrison (formerly Perry), Phytochemistry 41(1), 37(1996).Google Scholar
  5. 5.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(3), 193(2001).Google Scholar
  6. 6.
    S. V. Patwardhan and S. J. Clarson, Silicon Chemistry 1(3), 207-214 (2002).Google Scholar
  7. 7.
    S. V. Patwardhan and S. J. Clarson, unpublished data.Google Scholar
  8. 8.
    T. Coradin and J. Livage, Colloids and Surfaces B: Biointerfaces 21, 329(2001).Google Scholar
  9. 9.
    T. Coradin, O. Durupthy, and J. Livage, Langmuir 18(6), 2331(2002).Google Scholar
  10. 10.
    T. Coradin, C. Roux, and J. Livage, J. Mater. Chem. 12, 1242(2002).Google Scholar
  11. 11.
    L. Sudheendra and A. R. Raju, Materials Research Bulletin 37, 151(2002).Google Scholar
  12. 12.
    R. R. Naik, L. L. Brott, S. J. Clarson, and M. O. Stone, Journal of Nanoscience and Nanotechnology 2(1), 95 (2002).Google Scholar
  13. 13.
    J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, and D. E. Morse, PNAS 96, 361 (1999).Google Scholar
  14. 14.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Silicon Chemistry 1(1), 47(2002).Google Scholar
  15. 15.
    S. J. Clarson, P. W. Whitlock, S. V. Patwardhan, L. L. Brott, R. R. Naik, and M. O. Stone, Polymeric Materials: Science & Engineering, 81 (2002).Google Scholar
  16. 16.
    L. L. Brott, D. J. Pikas, R. R. Naik, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Nature 413, 291 (2001).Google Scholar
  17. 17.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Polymer Bulletin 48(4-5), 367 (2002).Google Scholar
  18. 18.
    R. Tacke, Angew. Chem. Int. Ed. 38(20), 3015(1999).Google Scholar
  19. 19.
    J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, Nature 403, 289 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations