Skip to main content
Log in

Parallel Versions of the Modified Coordinate and Gradient Descent Methods and Their Application to a Class of Global Optimization Problems

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

We investigate the convergence of finite-difference local descent algorithms for the solution of global optimization problems with a multi-extremum objective function. Application of noise-tolerant local descent algorithms to the class of so-called γ-regular problems makes it possible to bypass minor extrema and thus identify the global structure of the objective function. Experimental data presented in the article confirm the efficiency of the parallel gradient and coordinate descent algorithms for the solution of some test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. E. Dennis, Jr. and V. Torczon, “Direct search methods on parallel machines,” SIAM J. Optimization, 1, No. 4, 448-474 (1991).

    Google Scholar 

  2. G. Xue, “Molecular conformation on the CM-5 by parallel two-level simulated annealing,” J. Global Optimization, 4, 187-208 (1994).

    Google Scholar 

  3. A. Torn and S. Viitanen, “Topographical global optimization using pre-sampled points,” J. Global Optimization, 5, 267-276 (1994).

    Google Scholar 

  4. D. Bertsekas and Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, Englewood Cliffs, NJ.

  5. S. K. Zavriev, “On the global optimization properties of finite-difference local descent algorithms,” J. Global Optimization, 3, 63-78 (1993).

    Google Scholar 

  6. S. K. Zavriev and Yu. N. Perunova, “Using finite differences in the multistart method to solve a certain class of global optimization problems,” Vestnik MGU, Ser. 15, No. 3 (1997).

  7. A. H. Rinnooy Khan and G. T. Timmer, “Stochastic global optimization methods,” Math. Programming, 39, 27-78 (1987).

    Google Scholar 

  8. A. Torn and A. Zilinskas, Global Optimization, Springer, Berlin (1989).

    Google Scholar 

  9. B. T. Polak, Introduction to Optimization [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  10. Yu. N. Perunova, “Noise-tolerant methods for difference approximation of the gradient during parallelization,” electronic journal Issledovano v Rossii, 156, 1782-1791 (2001) http://zhurnal.ape.relarn.ru/articles/2001/156.pdf.

    Google Scholar 

  11. Y. Yong, “Dynamic tunneling algorithm for global optimization,” IEEE Trans. Systems, Man, Cybernetics, 19, No. 5, 1222-1230 (1989).

    Google Scholar 

  12. J. A. Northby, “Structure and binding of Lennard—Jones clusters: 13 ? N ? 147,” J. Chem. Phys., 87, No. 10, 6166-6177 (Nov. 1987).

    Google Scholar 

  13. T. C. Hu, V. Klee, and D. Larman, “Optimization of globally convex functions,” SIAM J. Control Optimization, 27, No. 5, 1026-1047 (1989).

    Google Scholar 

  14. D. Q. Mayne and E. Polak, “Nondifferentiable optimization via adaptive smoothing,” JOTA, 43, No. 4, 601-614 (1984).

    Google Scholar 

  15. C. D. Maranas and C. A. Floudas, “A deterministic global approach for molecular structure determination,” J. Chem. Phys., 100, No. 2, 1247-1261 (Jan. 1994).

    Google Scholar 

  16. R. Byrd, E. Eskow, and R. Schnabel, “A new large-scale global optimization method and its application to Lennard—Jones problems,” Tech. Rep. CU-CS-630-92, Dept. Computer Sci., Univ. of Colorado at Boulder.

  17. A. Neumaier, “Molecular modeling of proteins and mathematical prediction of protein structure,” SIAM Rev., 39, No. 3, 407-460 (1997).

    Google Scholar 

  18. F. P. Vasil'ev, Numerical Methods for Solving Extremum Problems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  19. M. Hoare, “Structure and dynamics of simple microclusters,” Adv. Chem. Phys., 40, 49-135 (1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavriev, S.K., Perunova, Y.N. Parallel Versions of the Modified Coordinate and Gradient Descent Methods and Their Application to a Class of Global Optimization Problems. Computational Mathematics and Modeling 14, 108–122 (2003). https://doi.org/10.1023/A:1022951305895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022951305895

Keywords

Navigation