Fullband Particle-Based Simulation of High-Field Transient Transport in III–V Semiconductors

Abstract

Motivated by recent experimental measurements (A. Leitenstorfer et al., 2000. Physical Review B 61(24): 16642–16652), this work presents the transient analysis of photogenerated electron-hole pairs in GaAs and InP pin diodes (S. M. Sze, 1981. Physics of Semiconductor Devices, 2nd edn., John Wiley) using a fullband particle-based simulator (M. Saraniti and S. Goodnick, 2000. IEEE Transactions on Electron Devices 47(10): 1909–1915). The fullband simulation tool is based on a particle-based technique that has been developed to reduce the computational time required for modeling charge transport phenomena in semiconductors. Excellent agreement is found between experiment and simulation of transient acceleration and velocity overshoot in GaAs and InP pin diodes due the femto-second optical excitation of carriers.

This is a preview of subscription content, access via your institution.

References

  1. Boers P. 1971. Measurements on dipole domains in indium phosphide. Physics Letters 34A: 329–330.

    Google Scholar 

  2. Brennan K. and Hess K. 1984. Theory of high-field transport of holes in GaAs and InP. Physical Review B 29(10): 5581–5590.

    Google Scholar 

  3. Chelikowsky J. and Cohen M. 1976. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zincblend semiconductors. Physical Review B 14(2): 556–582.

    Google Scholar 

  4. Fischetti M. 1991. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—Part I: Homogeneous transport. IEEE Transaction on electron devices 38(3): 634–649.

    Google Scholar 

  5. Fischetti M. and Laux S. 1988. Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Physical Review B 38(14): 9721– 9745.

    Google Scholar 

  6. Fischetti M. and Laux S. 1991. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende strctures—Part II: Submicrometer MOSFET's. IEEE Transaction on Electron Devices 38(3): 650–660.

    Google Scholar 

  7. Fischetti M., Sano N., Laux S., and Natori K. 1996. Full-bandstructure theory of high-field transport and impact ionization of electrons and holes in Ge, Si, and GaAs. In Proceedings of the 1996 Intl. Conf. of Semiconductor Processes and Devices (SISPAD'96), Tokyo, Japan.

  8. Goodnick S. and Lugli P. 1992. Hot-carrier relaxation on quasi-2D systems. In J. Shah (Ed.), Hot Carriers in Semiconductor Nanostructures: Physics and Applications. Academic Press, vol. 8, Ch. III.1, pp. 191–234.

  9. Gruzinskis V., Kersulis S., and Reklaitis A. 1991.Aneffiecient Monte Carlo particle technique for two-dimensional transistor modeling. Semiconductor Science and Technology 6(7): 602–606.

    Google Scholar 

  10. Hockney R. and Eastwood J. 1988. Computer Simulation Using Particles. Bristol: Adam Hilger.

    Google Scholar 

  11. Holway L., Steele S., and Alderstein M. 1979. In: Proceedings of the Seventh Biennial Cornell Electrical Engineering Conference. Ithaca, New York, Cornell University Press, pp. 199–208.

    Google Scholar 

  12. Houston P. and Evans A. 1977. Solid State Electronics 20: 197.

    Google Scholar 

  13. Jackson J. 1975, Classical Electrodynamics, 2nd edn., JohnWiley & Sons, New York.

    Google Scholar 

  14. Jacoboni C. and Lugli P. 1989. The Monte Carlo Method for Semiconductor Device Equations. Springer–Verlag, Wien.

    Google Scholar 

  15. Kometer K., Zandler G., and Vogl P. 1992. Lattice-gas cellularautomaton method for semiclassical transport in semiconductors. Physical Review B 46(3): 1382–1394.

    Google Scholar 

  16. Kunc K. and Nielsen O.H. 1979. Lattice dynamics of Zincblende structure compounds. II. Shell model. Computer Physics Communications 17(4): 413–422.

    Google Scholar 

  17. Leitenstorfer A., Hunsche S., Shah J., Nuss M., and Knox W. 2000. Femtosecond high-field transport in compound semiconductors. Physical Review B 61(24): 16642–16652.

    Google Scholar 

  18. Majerfeld A., Potter K., and Robson P. 1974. Subthreshold velocity-field characteristics for bulk and epixatial InP. Journal of Applied Physics 45: 3681–3682.

    Google Scholar 

  19. Ruch J. and Kino G. 1968. Physical Review 174: 921.

    Google Scholar 

  20. Saraniti M. and Goodnick S. 2000. Hybrid full-band cellular automaton/ Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Transactions on Electron Devices 47(10): 1909–1915.

    Google Scholar 

  21. Singh J. 1996. Optoelectronics. McGraw-Hill.

  22. Sze S. 1981. Physics of SemiconductorDevices, 2nd edn., JohnWiley & Sons, New York.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Saraniti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wigger, S., Saraniti, M., Goodnick, S. et al. Fullband Particle-Based Simulation of High-Field Transient Transport in III–V Semiconductors. Journal of Computational Electronics 1, 475–480 (2002). https://doi.org/10.1023/A:1022945122145

Download citation

  • Tera-Hertz radiation
  • high-field transport
  • Monte Carlo simulation