Skip to main content
Log in

Thermodynamic Model of Inorganic Arsenic Species in Aqueous Solutions. Potentiometric Study of the Hydrolytic Equilibrium of Arsenious Acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A potentiometric study of the hydrolysis of arsenious acid was carried out to define the thermodynamic model of the inorganic arsenic species in aqueous solutions. The protonation equilibrium of arsenious acid was determined at 25°C. The variation of the stoichiometric formation constant with the ionic strength was also studied up to ionic strength 3.0 mol-dm−3 in aqueous NaClO4, NaCl, and KCl. The thermodynamic formation constant of arsenious acid (log K o = 9.22 ± 0.01) and the various interaction parameters were computed using the Modified Bromley Methodology (MBM), for both the molar and molal concentration scales at constant temperature (25°C). The results showed the importance, not only of ionic strength, but also of the composition of the ionic medium on the distribution of the acid-base As(III) species as a function of pH in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Raposo, Thesis, EHU, Leioa, Spain, 2001.

  2. E. A. Woolson and N. Aharonson, J. Assoc. Off. Anal. Chem. 63, 523(1980).

    Google Scholar 

  3. R. L. Hothem and D. Welsh, Arch. Environ. Contam. Toxicol. 27, 180(1994).

    Google Scholar 

  4. M. E. Farago, Arsenic in the Marine Environment (Water Science and Technology Library, Palermo, Italy, 1997)

    Google Scholar 

  5. W. L. Lindsay and M. Sadiq, Sci. Total Environ. 28, 169(1983).

    Google Scholar 

  6. A. Gianguzza, E. Pelizzeti, and S. Sammartano, Marine Chemistry and Environmental Analytical Chemistry Approach (Kluwer Academic, Netherlands, 1997)

    Google Scholar 

  7. F. J. Millero and D. R. Schreiber, Amer. J. Sci. 282, 1508(1982).

    Google Scholar 

  8. T. M. Loehr and R. A. Plane, Inorg. Chem. 7, 1708(1972).

    Google Scholar 

  9. G. Borge, R. Castaño, M. P. Carril, M. S. Corbillón, and J. M. Madariaga, Fluid Phase Equilibr. 121, 85(1996).

    Google Scholar 

  10. G. Borge, N. Etxebarria, L. A. Fernandez, M. A. Olazabal, and J.M. Madariaga, Fluid Phase Equilibr. 121, 99(1996).

    Google Scholar 

  11. N. Etxebarria, L. A. Fernandez, and J.M. Madariaga, J. Chem. Soc. Dalton Trans., p. 3055(1994).

  12. R. Castaño, N. Etxebarria, L. A. Fernandez, and J.M. Madariaga, J. Chem. Soc. Dalton Trans., p. 2729(1994).

  13. G. Arana, N. Etxebarria, L. A. Fernandez, and J. M. Madariaga, J. Solution Chem. 24, 661(1995).

    Google Scholar 

  14. J. Sanz, J. C. Raposo, and J.M. Madariaga, Appl. Organomet. Chem. 14, 499(2000).

    Google Scholar 

  15. J. C. Raposo, J. Sanz, G. Borge, M. A. Olazabal, and J.M. Madariaga, Fluid Phase Equilibr. 155, 1(1999).

    Google Scholar 

  16. E. Bishop, Indicators (Pergamon Press, Germany, 1972)

    Google Scholar 

  17. G. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis 5th edn. (Longman, London, UK, 1989)

    Google Scholar 

  18. R. Cazallas, L. A. Fernandez, N. Etxebarria, and J.M. Madariaga, Lab. Rob. Autom. 5, 161(1993).

    Google Scholar 

  19. G. Gran, Analyst 77, 661(1952).

    Google Scholar 

  20. F. J. C. Rossotti and H. Rossotti, The Determination of the Stability Constants (McGraw-Hill, New York, 1961)

    Google Scholar 

  21. J. L. Fonseca, Thesis, EHU, Leioa, Spain, 1989.

  22. N. Ingri and L. G. Sillén, Acta Chem. Scand. 16, 173(1962).

    Google Scholar 

  23. Excel 97 (Microsoft Corporation, Redmond, WA, 1998)

  24. C. de Stefano, P. Mineo, C. Rigano, and S. Sammartano, Ann. Chim. (Rome) 83, 243(1993).

    Google Scholar 

  25. C. de Stefano, C. Foti, O. Giuffré, P. Mineo, C. Rigano, and S. Sammartano, Ann. Chim. 86, 257(1996).

    Google Scholar 

  26. P. H. Sherrod, NLREG-Nonlinear Regression Analysis Program (Nashville, TN, 1995)

    Google Scholar 

  27. O. Sh÷nel and P. Novotny, Densities of Aqueous Solutions of Inorganic Substances (Czechoslovak Academy of Sciences, Praga, 1985)

    Google Scholar 

  28. A. Okumura and Y. Daido, Inorg. Chim. Acta 144, 63(1988).

    Google Scholar 

  29. L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes (Metcalfe & Cooper Limited, London, 1964)

    Google Scholar 

  30. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976)

    Google Scholar 

  31. J.C. Raposo, J. Sanz, O. Zuloaga, M.A. Olazabal, and J.M. Madariaga, Talanta 57, 849(2002).

    Google Scholar 

  32. J.C. Raposo, O. Zuloaga, M.A. Olazabal, and J.M. Madariaga, Fluid Phase Equilibr. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raposo, J.C., Sanz, J., Zuloaga, O. et al. Thermodynamic Model of Inorganic Arsenic Species in Aqueous Solutions. Potentiometric Study of the Hydrolytic Equilibrium of Arsenious Acid. Journal of Solution Chemistry 32, 253–264 (2003). https://doi.org/10.1023/A:1022938418459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022938418459

Navigation