Skip to main content

Scanning Tunneling Spectroscopic Studies of the Pairing State of Cuprate Superconductors

Abstract

Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Sachdev, Science 288, 475(2000); and references therein.

    Google Scholar 

  2. 2.

    M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721(2000).

    Google Scholar 

  3. 3.

    D.-H. Lee, Phys. Rev. Lett. 88, 227003(2002).

    Google Scholar 

  4. 4.

    N.-C. Yeh et al., Phys. Rev. Lett. 87, 087003(2001).

    Google Scholar 

  5. 5.

    N.-C. Yeh et al., Physica C 364–365, 450(2001).

    Google Scholar 

  6. 6.

    N.-C. Yeh et al., Physica C 367, 174(2002).

    Google Scholar 

  7. 7.

    C.-T. Chen et al., Phys. Rev. Lett. 88, 227002(2002).

    Google Scholar 

  8. 8.

    D. J. van Harlingen, Rev. Mod. Phys. 67, 515(1995).

    Google Scholar 

  9. 9.

    C.-C. Tsuei and J. Kirtley, Rev. Mod. Phys. 72, 969(2000).

    Google Scholar 

  10. 10.

    D. Pines, Physica C 282–287, 273(1997).

    Google Scholar 

  11. 11.

    T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61(1999).

    Google Scholar 

  12. 12.

    V. J. Emery and S. A. Kivelson, Nature 374, 434(1995).

    Google Scholar 

  13. 13.

    G. Siebold et al., Phys. Rev. B 58, 13506(1998).

    Google Scholar 

  14. 14.

    C. M. Varma, Phys. Rev. B 55, 14554(1997).

    Google Scholar 

  15. 15.

    V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120(1997).

    Google Scholar 

  16. 16.

    Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317(1989).

    Google Scholar 

  17. 17.

    S. Chakravarty et al., Phys. Rev. B 63, 094503(2001).

    Google Scholar 

  18. 18.

    P. A. Lee and X. G. Wen, Phys. Rev. Lett. 78, 4111(1997).

    Google Scholar 

  19. 19.

    J. Y. T. Wei et al., Physica B 284, 973(2000).

    Google Scholar 

  20. 20.

    R. P. Vasquez et al., Appl. Phys. Lett. 53, 2692(1988).

    Google Scholar 

  21. 21.

    R. P. Vasquez et al., J. Phys: Condens. Matter 13, 7977(2001).

    Google Scholar 

  22. 22.

    J. Y. T. Wei et al., Phys. Rev. Lett. 81, 2542(1998).

    Google Scholar 

  23. 23.

    I. Maggio-Aprile et al., J. Electr. Spectro. 109, 147(2000).

    Google Scholar 

  24. 24.

    N. Miyakawa et al., Phys. Rev. Lett. 83, 1018(1999); N. Miyakawa et al., Phys. Rev. Lett.ibid. 80, 157(1998).

    Google Scholar 

  25. 25.

    V. M. Krasnov et al., Phys. Rev. Lett. 84, 5860(2000).

    Google Scholar 

  26. 26.

    K. M. Lang et al., Nature 415, 412(2002).

    Google Scholar 

  27. 27.

    S. Misra et al., Phys. Rev. Lett. 89, (2002).

  28. 28.

    A. V. Balatsky, M. I. Salkola, and A. Rosengren, Phys. Rev. B 51, 15547(1995).

    Google Scholar 

  29. 29.

    M. I. Salkola et al., Phys. Rev. Lett. 77, 1841(1996).

    Google Scholar 

  30. 30.

    M. E. Flatte and J. M. Byers, Phys. Rev. B 56, 11213(1997).

    Google Scholar 

  31. 31.

    M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Phys. Rev. B 55, 12648(1997).

    Google Scholar 

  32. 32.

    M. Vojta and R. Bulla, Phys. Rev. B 65, 014511(2001).

    Google Scholar 

  33. 33.

    H. Alloul et al., Phys. Rev. Lett. 67, 3140(1991).

    Google Scholar 

  34. 34.

    K. Ishida et al., Phys. Rev. Lett. 76, 531(1996).

    Google Scholar 

  35. 35.

    Y. Sidis et al., Phys. Rev. Lett. 84, 5900(2000).

    Google Scholar 

  36. 36.

    P. W. Anderson, Phys. Rev. Lett. 3, 325(1959).

    Google Scholar 

  37. 37.

    A. V. Chubukov and N. Gemelke, Phys. Rev. B 61, R6467(2000).

    Google Scholar 

  38. 38.

    C.-L. Wu, C.-Y. Mou, and D. Chang, Phys. Rev. B 63, 172503(2001).

    Google Scholar 

  39. 39.

    A. Lanzara et al., Nature 412, 510(2001).

    Google Scholar 

  40. 40.

    J. X. Zhu, C. S. Ting, and C. R. Hu, Phys. Rev. B 62, 6027(2000).

    Google Scholar 

  41. 41.

    S. H. Pan et al., Nature 403, 746(2000).

    Google Scholar 

  42. 42.

    L. Alff et al., Phys. Rev. Lett. 83, 2644(1999).

    Google Scholar 

  43. 43.

    C.-C. Tsuei and J. Kirtley, Phys. Rev. Lett. 72, 969(2000).

    Google Scholar 

  44. 44.

    J. A. Skinta et al., Phys. Rev. Lett. 88, 207005(2002).

    Google Scholar 

  45. 45.

    A. A. Abrikosov and L. P. Gor'kov, Soviet Phys. JETP 12, 1243(1961).

    Google Scholar 

  46. 46.

    C. U. Jung et al., Physica C 366, 299(2002).

    Google Scholar 

  47. 47.

    H. Shiba, Prog. Theor. Phys. 40, 435(1968).

    Google Scholar 

  48. 48.

    L. Alff, private communications.

  49. 49.

    C. U. Jung et al., Phys. Rev. B 65, 172501(2002).

    Google Scholar 

  50. 50.

    E. W. Hudson et al., Nature 411, 922(2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeh, NC., Chen, CT., Vasquez, R.P. et al. Scanning Tunneling Spectroscopic Studies of the Pairing State of Cuprate Superconductors. Journal of Low Temperature Physics 131, 435–444 (2003). https://doi.org/10.1023/A:1022934832360

Download citation

Keywords

  • Magnetic Material
  • Spectroscopic Study
  • Scanning Tunneling Microscope
  • Electronic Correlation
  • Scan Tunneling