Skip to main content
Log in

Removal of Formic Acid from Wastewater using Three-Phase Three-Dimensional Electrode Reactor

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A new electrochemical reactor, three-phase three-dimensional electrode reactor, was designed and used to investigate theremoval of formic acid from simulated wastewater. The experimental results were assessed in term of Chemical OxygenDemand (COD) removal efficiency. The results showed that the three-phase three-dimensional electrodes could effectively removeformic acid. Its COD removal efficiency was much higher than those of two-dimensional electrodes and common three-dimensionalelectrodes, respectively. The COD removal efficiency of the three-phase three-dimensional electrodes using air as a spargegas increased 13.5% relative to that using nitrogen as a spargegas. The observation indicated that the sparged air in the three-phase three-dimensional electrodes not only participated insome physical processes but also played an important role in electrochemical reactions to assist COD removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alverez-Gallbergos, A. and Pletcher, D.: 1999, ‘The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents’, Electrochim. Acta 44, 2483-2492.

    Google Scholar 

  • Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C. and Peringer, P.: 1996, ‘Degradation/decoloration of concentrated solutions of Orange II. Kinetics and quantum yield for sunlight induced reaction via Fenton type reagents’, J. Photochem. Photobiol. A. 99, 57-66.

    Google Scholar 

  • Belmant, C., Cognet, P., Berlan, J., Lacoste, G., Fabre, P.-L. and Jud, J.-M.: 1998, ‘Application of an electrochemical pulsed flow reactor to electroorganic synthesis. Part I. Reduction of acetophenone’, J. Appl. Electrochem. 28, 185-191.

    Google Scholar 

  • Bockris, J. O. and Kim, J.: 1997, ‘Effect of contact resistance between particles on the current distribution in a packed bed electrode’, J. Appl. Electrochem. 27, 890-901.

    Google Scholar 

  • Boncz, M. A., Bruning, H., Rulkens, W. H., Sudhoelter, E. J. R., Harmsen, G. H. and Bijsterbosch, J. W.: 1997, ‘Kinetic and mechanistic aspects of the oxidation of chlorophenols by ozone’, Water Sci. Technol. 35, 65-72.

    Google Scholar 

  • Brezonik, P. L., Fulkerson-Brekken, J.: 1998, ‘Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents’, Environ. Sci. Technol. 32, 3004-3010.

    Google Scholar 

  • Brown, C. J., Pletcher, D., Walsh, F. C., Hammond, J. K. and Robinson, D.: 1994, ‘Studies of threedimensional electrodes in the FM01-LC laboratory electrolyser’, J. Appl. Electrochem. 24, 95- 100.

    Google Scholar 

  • Butterfield, I. M., Christensen, P. A., Hamnett, A., Shaw, K. E., Walker, G. M., Walker, S. A. and Howarth, C. R.: 1997, ‘Applied studies on immoblilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water’, J. Appl. Electrochem. 27, 385-395.

    Google Scholar 

  • Candal, R. J., Zeltner, W. A. and Anderson, M. A.: 1997, ‘Titanium-supported titania photoelectrodes made by sol-gel processes’, J. Environ. Eng. 125, 906-912.

    Google Scholar 

  • Candal, R. J., Zeltner, W. A. and Anderson, M. A.: 1998, ‘TiO2-mediated photoelectrocatalytic purification of water’, J. Adv. Oxid. Technol. 3, 270-276.

    Google Scholar 

  • Canizares, P., Dominguez, J. A., Rodrigo, M. A., Villasenor, J. and Rodriguez, J.: ‘Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode’, Ind. Eng. Chem. Res. 38, 3779-3785.

  • Card, J. C., Valentin, G. and Storck, A.: 1990, ‘The activated carbon electrode: A new, experimentally verified mathematical model for the potential distribution’, J. Electrochem. Soc. 137, 2736-2745.

    Google Scholar 

  • Chen, W. G. and Zhu, X. H., 1998, ‘Mechanism of production H2O2 and ·OH in ESC and its application to organic degradation’, China Environ. Sci. 18, 148-150.

    Google Scholar 

  • Chou, S., Huang, Y.-H., Lee, S.-N., Huang, G.-H. and Huang, C.: 1998, ‘Treatment of high strength hexamine-containing wastewater by Electro-Fenton method’, Water Res. 33, 751-759.

    Google Scholar 

  • Claudel, B., Nueilati, M. and Andrieu J.: 1984, ‘Oxidation of formic acid in aqueous solution by palladium catalysts’, Appl. Catal. 11, 217-225.

    Google Scholar 

  • Coin, R. J., Niksa, M. J. and Elyanow, D. I.: 1996, ‘Wastewater treatment enhanced by electrochemistry’, Environ. Prog. 15, 122-127.

    Google Scholar 

  • Davis, A. P. and Green, D. L.: 1999, ‘Photocatalytic oxidation of cadmium-EDTA with titanium dioxide’, Environ. Sci. Technol. 33, 609-617.

    Google Scholar 

  • Dieckmann, G. R. and Langer, S. H.: 1997, ‘Selective electrogenerative oxidation of benzyl alcohol with platinum-graphite packed-bed anodes’, J. Appl. Electrochem. 27, 1-8.

    Google Scholar 

  • Dinsdale, R. M., Hwkes, F. R. and Hawkes, D. L.: 2000, ‘Aerobic digestion of short chain organic acids in an expanded granular sludge bed reactor’. Water Res. 34, 2433-2438.

    Google Scholar 

  • El-Deab, M. S., Saleh, M. M., El-Anadouli, B. E. and Ateya, B. G.: 1999, ‘Electrochemical removal of lead ions from flowing electrolytes using packed bed electrodes’,J. Electrochem. Soc. 146, 208-213.

    Google Scholar 

  • Foller, P. C. and Bombard, R. T.: 1995, ‘Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen’, J. Appl. Electrochem. 25, 613-627.

    Google Scholar 

  • Goodridge, F., King, C. J. H. and Wright, A. R.: 1977, ‘The behavior of bipolar packed-bed electrodes’, Electrochim. Acta 22, 347-352.

    Google Scholar 

  • Grau, J. M. and Bisang, J. M.: 1998, ‘Cadmium removal from aqueous sulfate solutions by treatment with iron felts’, J. Chem. Technol. Biotechnol. 73, 398-404.

    Google Scholar 

  • Harmsen, J. M. A., Jelemensky, L., Van, P. J. M., Kuster, B. F. M. and Marin, G. B.: 1997, ‘Kinetic modeling for wet air oxidation of formic acid on a carbon supported platinum catalyst’, Appl. Catal. A. 165, 499-509.

    Google Scholar 

  • Hidaka, H., Nagaoka, H., Nohara, K., Shimura, T., Horikoshi, S., Zhao, J. and Serpone, N.: 1996, ‘A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2/TCO particulate film electrode assembly’, J. Photochem. Photobiol. A 98, 73-78.

    Google Scholar 

  • Hoffmann, M. R., Martin, S. C., Choi, W. and Bahnemann, D.W.: 1995, ‘Environmental applications of semiconductor photocatalysis’, Chem. Rev. 95, 69-96.

    Google Scholar 

  • Hwang, D.-S., Lee, E.-H., Kim, K.-W., Lee, K.-I. and Park, S.-J.: 1999, ‘Denitration of simulated high-level liquid waste by formic acid’, J. Ind. Eng. Chem. 5, 45-51.

    Google Scholar 

  • Kastening, B., Boinowitz, T. and Heins, M.: 1997a, ‘Design of a slurry electrode reactor system’, J. Appl. Electrochem. 27, 147-152.

    Google Scholar 

  • Kastening, B., Hahn, M., Rabanus, B., Heins, M. and Zum Feld, U.: 1997b, ‘Electronic properties and double layer of activated carbon’, Electrochim. Acta 42, 2789-2800.

    Google Scholar 

  • Kawaguchi, H.: 1993, ‘Photooxidation of formic acid in aqueous solution in the presence of hydrogen peroxide’, Chemosphere 26, 1965-1970.

    Google Scholar 

  • Kim, D. H. and Anderson, M. A.: 1996, ‘Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films’, J. Photochem. Photobiol. A. 94, 221-229.

    Google Scholar 

  • Kim, D. H. and Anderson, M. A.; 1994, ‘Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode’, Environ. Sci. Technol. 28, 479-483.

    Google Scholar 

  • Legrini, O., Oliveros, E. and Braun, A. M.: 1993, ‘Photochemical processes for water treatment’, Chem. Rev. 93, 671-698.

    Google Scholar 

  • Matatov-Meytal, Y. I. and Sheintuch, M.: 1998, ‘Catalytic abatement of water pollutants’, Ind. Eng. Chem. Res. 37, 309-326.

    Google Scholar 

  • Miller, L. W., Tejedor-Tejedor, M. I. and Anderson, M. A.: 1999, ‘Titanium dioxide-coated silica waveguides for the photocatalytic oxidation of formic acid in water’, Environ. Sci. Technol. 33, 2070-2075.

    Google Scholar 

  • Ogata, Y., Tomizawa, K. and Takagi, K.: 1981, ‘Photooxidation of formic, acetic, and propionic acids with aqueous hydrogen peroxide’, Can. J. Chem. 59, 14-18.

    Google Scholar 

  • Pasquini, F. and Tissot, P.: 1996, ‘Studies of the oxidation of ethanol on a reticulated nickel rotating cylinder electrode’, J. Appl. Electrochem. 26, 211-215.

    Google Scholar 

  • Putzien, J.: 1984, ‘Network analysis of packed-bed activated carbon electrodes with linear I/Vgraphs’, Electrochim. Acta. 29, 979-981.

    Google Scholar 

  • Ragnini, C. A. R., Di, I. R. A., Bizzo, W. and Bertazzoli, R.: 2000, ‘Recycled niobium felt as an efficient three-dimensional electrode for electrolytic metal ion removal’, Water Res. 34, 3269- 3276.

    Google Scholar 

  • Rajeshwar, K., Ibanez, J. G. and Swain, G. M.: 1994, ‘Electrochemistry and the environment’, J. Appl. Electrochem. 24, 1077-1091.

    Google Scholar 

  • Ray, A. K.: 1998, ‘A new photocatalytic reactor for destruction of toxic water pollutants by advanced oxidation process’, Catal. Today. 44, 357-368.

    Google Scholar 

  • Scott, L. L., Winnick, J., Kohl, P. A. and Bottomley, L. A.: 1998, ‘Electrosynthesis of sodium hydrosulfite: III. Porous cathode materials and process model’, J. Electrochem. Soc. 145, 4062-4066.

    Google Scholar 

  • Simonsson, D.: 1997, ‘Electrochemistry for a cleaner environment’, Chem. Soc. Rev. 26, 181-189.

    Google Scholar 

  • Szanto, D., Trinidad, P. and Walsh, F.: 1998, ‘Evaluation of carbon electrodes and electrosynthesis of coumestan and catecholamine derivatives in the FM01-LC electrolyzer’, J. Appl. Electrochem. 28, 251-258.

    Google Scholar 

  • Tatapudi, P. and Fenton, J. M.: 1993, ‘Synthesis of hydrogen peroxide in a proton exchange membrane electrochemical reactor’, J. Electrochem. Soc. 140, L55-L57.

    Google Scholar 

  • Tennakoon, C. L. K., Bhardwaj, R. C. and Bockris, J. O.: 1996, ‘Electrochemical treatment of human wastes in a packed bed reactor’, J. Appl. Electrochem. 26, 18-29.

    Google Scholar 

  • Tissot, P. and Fragniere, M.: 1994, ‘Anodic oxidation of cyanide on a reticulated three-dimensional electrode’, J. Appl. Electrochem. 24, 509-512.

    Google Scholar 

  • Walsh, F. and Reade, G.: 1994, ‘Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance’, Analyst 119, 797-803.

    Google Scholar 

  • Yeager, E.: 1984, ‘Electrocatalysis for O2 reduction’, Electrochim. Acta 29, 1527-1537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., He, C., An, T. et al. Removal of Formic Acid from Wastewater using Three-Phase Three-Dimensional Electrode Reactor. Water, Air, & Soil Pollution 144, 67–79 (2003). https://doi.org/10.1023/A:1022931618033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022931618033

Navigation