Skip to main content
Log in

Lagrange-Type Functions in Constrained Optimization

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Auslender, “Penalty and barrier methods:A unified framework,” SIAM J. Optim., 10, 211–230 (1999).

    Google Scholar 

  2. A. Auslender, R. Cominetti, and M.Haddou, “Asymptotical analysis for penalty and barrier methods in convex and linear programming,” Math. Oper. Res., 22, 43–62 (1997).

    Google Scholar 

  3. A. M. Bagirov, “Derivative-free methods for unconstrained nonsmooth optimization and its numerical analysis,” Investigacao Operacional, 1975–93 (1999).

    Google Scholar 

  4. A. M. Bagirov and A. M. Rubinov, “Global minimization of increasing positively homogeneous func-tions over the unit simplex,” Ann. Oper. Res., 98, 171–188 (2000).

    Google Scholar 

  5. A. M. Bagirov and A. M. Rubinov, “Cutting angle method and a local search,” J. Glob. Optim.(to appear).

  6. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming.Theory and Algorithms, John Wiley & Sons, New York (1993).

    Google Scholar 

  7. A. Ben-Tal and J. Zowe, “Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems,” Math. Program., 24, 70–91 (1982).

    Google Scholar 

  8. D. P. Bertsekas, Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, New York (1982).

    Google Scholar 

  9. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,Massachusetts (1995).

    Google Scholar 

  10. J. M. Borwein D. and Preiss, “A smooth variational principle with applications to subdifferentiability and differentiability,” Trans. Amer. Math. Soc., 303, 517–527 (1987).

    Google Scholar 

  11. J. V. Burke, “Calmness and exact penalization,” SIAM J.Control Optimization, 29, 493–497 (1991).

    Google Scholar 

  12. J. V. Burke, “An exact penalization viewpoint of constrained optimization,” SIAM J. Control Opti-mization, 29, 968–998 (1991).

    Google Scholar 

  13. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York (1983).

    Google Scholar 

  14. I. Ekeland and R.Temam, Convex Analysis and Variational Problems, Elsevier North Holland, Am-sterdam (1976).

    Google Scholar 

  15. Yu. G. Evtushenko, A. M. Rubinov, and V. G. Zhadan, “General Lagrange-type functions in con-strained global optimization.I.Auxiliary functions and optimality conditions,” Optim. Methods Softw.(to appear).

  16. Yu. G. Evtushenko, A. M. Rubinov, and V. G. Zhadan, “General Lagrange-type functions in con-strained global optimization.II.Exact auxiliary functions,” Optim. Methods Softw.(to appear).

  17. C. A. Floudas et al., Handbook of Test Problems in Local and Global Optimization, Kluwer Academic, Dordrecht (1999).

    Google Scholar 

  18. R. N. Gasimov, “Augmented Lagrangian duality and nondifferentiable optimization methods in non-convex programming,” J. Glob. Optim.(to appear).

  19. F. Giannessi, “Theorems on the alternative and optimality conditions,” J. Optimization Theory Appl., 42, 331–365 (1984).

    Google Scholar 

  20. F. Giannessi and M. Mastroeni, “On the theory of vector optimization and variational inequalities. Image space analysis and separation,” In: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories(F.Giannessi, ed.), Kluwer Academic, Dordrecht (1999), pp.153–215.

    Google Scholar 

  21. C. J. Goh and X. Q. Yang, “A sufficient and necessary condition for nonconvex constrained opti-mization,” Appl. Math. Lett., 10, 9–12 (1997).

    Google Scholar 

  22. C. J. Goh and X. Q. Yang, “A nonlinear Lagrangian theory for nonconvex optimization,” J. Opti-mization Theory Appl., 109, 99–121 (2001).

    Google Scholar 

  23. D. M. Himmelblau, Applied Nonlinear Optimization, McGraw-Hill (1972).

  24. J. B. Hiriart-Urruty, J. J. Strodiot, and V. Hien Nguyen, “Generalized Hessian matrix and second-order optimality conditions for problems with C1,1data,” Appl. Math. Optimization, 11, 43–56 (1984).

    Google Scholar 

  25. X. X. Huang and X. Q. Yang, “Duality and exact penalization for vector optimization via augmented Lagrangian,” J. Optimization Theory Appl., 111(2001).

  26. X. X. Huang and X. Q. Yang, “Approximate optimal solutions and nonlinear Lagrangian functions,” J. Glob. Optim.(to appear).

  27. X. X. Huang and X. Q. Yang, “A unified augmented Lagrangian approach to duality and exact penalization,” Math. Oper. Res.(to appear).

  28. X. X. Huang and X. Q. Yang, “Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization,” SIAM J. Optimization(to appear).

  29. A. Ioffe, “Necessary and sufficient conditions for a local minimum. III. Second-order conditions and augmented duality,” SIAM J. Control Optimization, 17, 266–288 (1979).

    Google Scholar 

  30. E. I. Khenkin, “A search algorithm for a general problem of mathematical programming,” Zh. Vychisl. Mat. Mat. Fiz., 16, 61–71 (1976).

    Google Scholar 

  31. D. Li and X. L. Sun, “Value estimation function method for constrained global optimization,” J. Optimization Theory Appl., 102, 385–409 (1999).

    Google Scholar 

  32. P. O. Lindberg, “A generalization of Fenchel conjugation giving generalized Lagrangians and symmet-ric nonconvex duality,” In: Survey of Mathematical Programming(A. Prekopa, ed.), North-Holland, Amsterdam, (1979), pp. 249–267.

  33. Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cam-bridge University Press, New York (1996).

    Google Scholar 

  34. Z. Q. Luo and J. S. Pang, eds., “Error bounds in mathematical programming,” Math. Program., Ser. B., 88, No. 2 (2000).

    Google Scholar 

  35. V. L. Makarov, M. J. Levin, and A. M. Rubinov, Mathematical Economic Theory: Pure and Mixed Types of Economic Mechanisms, Elsevier, Amsterdam (1995).

  36. W. Oettli and X. Q. Yang, “Modified Lagrangian and least root approaches for general nonlinear optimization problems,” J. Appl. Math.(to appear).

  37. D. Pallaschke and S. Rolewicz, Foundation of Mathematical Optimization, Kluwer Academic Pub-lishers (1997).

  38. J. S. Pang, “Error bounds in mathematical programming,” Math. Program., 79, 299–332 (1997).

    Google Scholar 

  39. J. Pinter, Global Optimization in Action.Continuous and Lipschitz Optimization: Algorithms, Im-plementations, and Applications, Kluwer Academic (1996).

  40. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey (1970).

    Google Scholar 

  41. R. T. Rockafellar, “Augmented Lagrange multiplier functions and duality in nonconvex program-ming,” SIAM J.Control Optimization, 12, 268–285 (1974).

    Google Scholar 

  42. R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM Rev., 35, 183–238 (1993).

    Google Scholar 

  43. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin (1998).

    Google Scholar 

  44. A. M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic (2000).

  45. A. M. Rubinov and M. Yu. Andramonov, “Lipschitz programming via increasing convex-along-rays functions,” Optim. Methods Softw., 10, 763–781 (1999).

    Google Scholar 

  46. A. M. Rubinov and R. Gasimov, “The equivalence of nonlinear convolution functions,” in: Proc.5th Int. Conf. Optimization: Techniques and Applications, Hong-Kong (2001), pp.389–396.

  47. A. M. Rubinov and J. Giri, “Comparison of nonlinear Lagrange functions and penalty functions for problems with a single constraint,” in: Proc. 5th Int. Conf. Optimization: Techniques and Applica-tions, Hong-Kong (2001),pp. 360–366.

  48. A. M. Rubinov, B. M. Glover, and X. Q. Yang, “Decreasing functions with applications to penaliza-tion,” SIAM J. Optim., 10, No. 1, 289–313 (1999).

    Google Scholar 

  49. A. M. Rubinov, B. M. Glover, and X. Q. Yang, “Modified Lagrangian and penalty functions in continuous optimization,” Optimization, 46, 327–351 (1999).

    Google Scholar 

  50. A. M. Rubinov and A. Uderzo, “On separation functions,” J. Optimization Theory Appl.,109, 345–370 (2001).

    Google Scholar 

  51. A. M. Rubinov and X. Q. Yang, “Nonlinear penalty functions with a small penalty parameter” (to appear).

  52. A. M. Rubinov, X. Q. Yang, and B. Glover, “Extended Lagrange and penalty functions in optimiza-tion,” J. Optimization Theory Appl., 111, 381–405 (2001).

    Google Scholar 

  53. I. Singer, “Some general Lagrangian duality theorems,” J. Math. Anal. Appl., 144, 26–51 (1989).

    Google Scholar 

  54. I. Singer, Abstract Convex Analysis, Wiley-Interscience, New York (1997).

    Google Scholar 

  55. N. Z. Shor, Minimization Methods for Nondifferentiable Functions, Springer-Verlag, Berlin (1985).

    Google Scholar 

  56. C. Y. Wang, X. Q. Yang, and X. M. Yang, “Nonlinear Lagrange duality theorems and penalty function methods in continuous optimization ”(submitted paper).

  57. X. Q. Yang, “An exterior point method for computing points that satisfy second order necessary conditions for a C1,1optimization problem,” J. Math. Anal. Appl., 87,118–133 (1994).

    Google Scholar 

  58. X. Q. Yang, “Second-order global optimality conditions for convex composite optimization,” Math. Program., 81, 327–347 (1998).

    Google Scholar 

  59. X. Q. Yang and X. X. Huang, “A nonlinear Lagrangian approach to constrained optimization prob-lems,” SIAM J. Optim., 14, 1119–1144 (2001).

    Google Scholar 

  60. Yu. G. Yevtushenko and V. G. Zhadan, “Exact auxiliary functions in optimization problems,” Zh. Vychisl. Mat. Mat. Fiz., 30, No. 1, 43–57 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinov, A.M., Yang, X.Q., Bagirov, A.M. et al. Lagrange-Type Functions in Constrained Optimization. Journal of Mathematical Sciences 115, 2437–2505 (2003). https://doi.org/10.1023/A:1022927915135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022927915135

Navigation