Skip to main content
Log in

Soret Coefficients for Aqueous Polyethylene Glycol Solutions and Some Tests of the Segmental Model of Polymer Thermal Diffusion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A thermogravitational cell is used to measure Soret coefficients (s) for dilute binary aqueous solutions of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol (PEG) fractions with average molecular weights from 200 to 20,000 g-mol−1. The cell design allows the top and bottom halves of the solution column to be withdrawn and injected into a high-precision HPLC differential refractometer detector for analysis. Previously reported mutual diffusion coefficients D and the measured Soret coefficients are used to calculate thermal diffusion coefficients D T. s and D vary with the PEG molecular weight M as M +0.53 and M −0.52, respectively; hence, D T = sD is essentially independent of M. The segmental model of polymer thermal diffusion predicts D T = Dseg U S/RT 2, where D seg is the segment diffusion coefficient, U S the solvent activation energy for viscous flow, R the gas constant, and T the temperature. The predicted D T values, although independent of M, are too large by a factor of five. Additional tests of the segmental model are provided using literature data for polystyrene + toluene, n-alkane + CCl4, and n-alkane + CHCl3 solutions. Agreement with experiment is not obtained. In particular, the measured D T values for the alkane solutions are negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Schimpf and J. C. Giddings, J. Polymer Sci. B 27, 1317(1989).

    Google Scholar 

  2. M. E. Schimpf and J. C. Giddings, Macromolecules 20, 1561(1987).

    Google Scholar 

  3. R. Sisson and J. C. Giddings, Anal. Chem., p. 4043(1994).

  4. M. E. Schimpf, Trends Polymer Sci. 4, 114(1996).

    Google Scholar 

  5. M. E. Schimpf and S. N. Semenov, J. Phys. Chem. B 104, 9935(2000).

    Google Scholar 

  6. O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamarîa, J. A. Carrión, and J. M. Savirón, Macromolecules 27, 4968(1994).

    Google Scholar 

  7. P. Rossmanith and W. K÷hler, Macromolecules 29, 3203(1996).

    Google Scholar 

  8. K. J. Zhang, M. E. Briggs, R. W. Gammon, J. V. Sengers, and J. F. Douglas, J. Chem. Phys. 111, 2270(1999).

    Google Scholar 

  9. A. van Asten, W. T. Kok, R. Tijssen, and H. Poppe, J. Polymer Sci. Polymer Phys. Ed. 34, 297(1996).

    Google Scholar 

  10. E. Venema, P. de Leeuw, J. C. Kraak, H. Poppe, and R. Tijssen, J. Chromatogr. A 765, 135(1997).

    Google Scholar 

  11. M. Schimpf, K. Caldwell, and J. C. Giddings, eds. Field-Flow Fractionation Handbook Wiley (Interscience), New York, 2000

    Google Scholar 

  12. A. Katchalsky and P. F. Curran, Non-Equilibrium Thermodynamics (Harvard University Press, Cambridge, MA, 1965)

    Google Scholar 

  13. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

  14. W. A. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of the Transport Properties of Fluids (Blackwell, London, 1991)

    Google Scholar 

  15. A. H. Emery and H. G. Drickamer, J. Chem. Phys. 23, 2252(1955).

    Google Scholar 

  16. H. J. V. Tyrrell, Chem. Commun., p. 456(1967).

  17. T. N. Khazanovich, J. Polymer Sci. Part C 16, 2463(1967).

    Google Scholar 

  18. A. Vergara, L. Paduano, V. Vitagliano, and R. Sartorio, Phys. Chem. Chem. Phys. 1, 5377(1999).

    Google Scholar 

  19. L. Paduano, R. Sartorio, G. D'Errico, and V. Vitagliano, J. Chem. Soc. Faraday Trans. 94, 2571(1998).

    Google Scholar 

  20. R. L. Rowley, S. C. Yi, V. Gubler, and J. M. Stoker, Fluid Phase Equilibr. 36, 219(1987).

    Google Scholar 

  21. R. L. Rowley, S. C. Yi, V. Gubler, and J. M. Stoker, J. Chem. Eng. Data 33, 362(1988).

    Google Scholar 

  22. L. G. Longsworth, in The Structure of Electrolytic Solutions, W. J. Hamer, ed. (Wiley, New York, 1959)

    Google Scholar 

  23. M. H. Hwang, D. Robinson, E. J. Billo, and J. Lin, J. Solution Chem. 17, 83(1988).

    Google Scholar 

  24. B. D. Butler and J. C. R. Turner, Trans. Faraday Soc. 62, 3114(1960).

    Google Scholar 

  25. D. J. Stanford and A. Beyerlein, J. Chem. Phys. 58, 4338(1973).

    Google Scholar 

  26. F. H. Horne and Y. Xu, J. Phys. Chem. 93, 6533(1989).

    Google Scholar 

  27. J. N. Agar, Trans. Faraday Soc. 62, 776(1960).

    Google Scholar 

  28. C. L. Yaws, Chemical Properties Handbook (McGraw Hill, New York, 1999)

    Google Scholar 

  29. D. J. Trevoy and H. G. Drickamer, J. Chem. Phys. 17, 1120(1949).

    Google Scholar 

  30. M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamarîa, and J. J. Valencia, J. Phys. Condensed Matter 10, 3321(1998).

    Google Scholar 

  31. W. G. Breck and J. N. Agar, Trans. Faraday Soc. 53, 179(1957).

    Google Scholar 

  32. H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids (Butterworths, London, 1984.)

    Google Scholar 

  33. D. G. Leaist, J. Solution Chem. 21, 1035(1992).

    Google Scholar 

  34. D. G. Leaist, J. Chem. Soc. Faraday Trans. 76, 597(1991).

    Google Scholar 

  35. M. Bender, Macromolecules 28, 1331(1995).

    Google Scholar 

  36. A. J. Easteal, A. V. J. Edge, and L. A. Woolf, J. Phys. Chem. 88, 6060(1984).

    Google Scholar 

  37. R. Mills, J. Phys. Chem. 77, 685(1973).

    Google Scholar 

  38. L. J. Longsworth, J. Phys. Chem. 58, 770(1954).

    Google Scholar 

  39. L. J. Longsworth, J. Phys. Chem. 64, 1914(1960).

    Google Scholar 

  40. A. L. Van Geet and A. W. Adamson, J. Phys. Chem. 68, 238(1964).

    Google Scholar 

  41. J. C. Shieh and P. A. Lyons, J. Phys. Chem. 73, 3258(1969).

    Google Scholar 

  42. D. W. McCall, D. G. Douglas, and E. W. Anderson, Phys. Fluids 2, 87(1959).

    Google Scholar 

  43. B. Vincent, J. Colloid Interface Sci. 42, 270(1973).

    Google Scholar 

  44. M. D. Crowder and M. L. Hair, J. Phys. Chem. 81, 1631(1977).

    Google Scholar 

  45. S. C. Yi and R. L. Rowley, J. Chem. Phys. 87, 7214(1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J., Popov, J.J., Kolisnek-Kehl, S. et al. Soret Coefficients for Aqueous Polyethylene Glycol Solutions and Some Tests of the Segmental Model of Polymer Thermal Diffusion. Journal of Solution Chemistry 32, 197–214 (2003). https://doi.org/10.1023/A:1022925216642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022925216642

Navigation