Skip to main content
Log in

SU(VAR)3-9 is a Conserved Key Function in Heterochromatic Gene Silencing

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, L., G. Laible, P. Selenko, M. Schmid, R. Dorn, G. Schotta, S. Kuhfittig, A. Wolf, A. Lebesorger, P.B. Singh, G. Reuter & T. Jenuwein, 1999. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins that complex with the heterochromatin component M31. EMBO J. 18: 1923-1938.

    Google Scholar 

  • Appels, R. & A.J. Hilliker, 1982. The cytogenetic boundaries of the rDNA region within heterochromatin of the X chromosome of Drosophila melanogaster and their relation to male meiotic pairingsites. Genet. Res. 39: 149–156.

    Google Scholar 

  • Bannister, A.J., P. Zegermann, J.F. Patridge, E.A. Miska, J.O. Thomas, T.C. Allshire & T. Kouzarides, 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Google Scholar 

  • Baumbusch, L., T. Thorstensen, V. Krauss, A. Fischer, K. Naumann, R. Assalkhou, I. Schultz, G. Reuter & R.B. Aalen, 2001. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins which can be assigned to four evolutionary conserved classes. Nucl. Acid. Res. 29: 4319-4333.

    Google Scholar 

  • Bender, W., P. Spierer & D.S. Hogness, 1983. Chromosome walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex of Drosophila melanogaster. J.Mol. Biol. 168: 17–33.

    Google Scholar 

  • Boggs, B.A., P. Cheung, E. Heard, D.L. Spector, A.C. Chinault & C.D. Allis, 2002. Differential methylated forms of histone H3 show unique association patterns with inactive human X chromosome. Nat. Genet. 30: 73–76.

    Google Scholar 

  • Cléard, F., M. Delattre & P. Spierer, 1997. SU(VAR)3-7: a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J. 16: 5280-5288.

    Google Scholar 

  • Cléard, F. & P. Spierer, 2001. Position-effect variegation in Drosophila: the modifier Su(var)3-7 is a modular DNA-binding protein. EMBO Rep. 21: 1095-1100.

    Google Scholar 

  • Cléard, F., M. Matsarskaia & P. Spierer, 1995. The modifier of position-effect variegation Suvar(3)7 of Drosophila: there are two alternative transcripts and seven scattered zinc fingers, each preceded by a tryptophan box. Nucl. Acid. Res. 23: 796–802.

    Google Scholar 

  • Cooper, K.W., 1959. Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin”. Chromosoma 10: 535–588.

    Google Scholar 

  • Czermin, B., G. Schotta, B.B. Hülsmann, A. Brehm, P.B. Becker, G. Reuter & A. Imhof, 2001. Physical and functional interaction of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2: 915–919.

    Google Scholar 

  • Delattre, M., A. Spierer, C.-H. Tonka & P. Spierer, 2000. The genomic silencing of position-effect variegation in Drosophila melanogaster: interaction between the heterochromatinassociated proteins Su(var)3-7 and HP1. J. Cell. Sci. 113: 4253-4261.

    Google Scholar 

  • Donaldson, K.M., A. Lui, G.H. Karpen, 2002. Modifiers of terminal deficiency-associated position effect variegation in Drosophila. Genetics 160: 995-1009.

    Google Scholar 

  • Dorn, R., J. Szidonya, G. Korge, M. Sehnert, H. Taubert, I. Archoukieh, B. Tschiersch, H. Morawietz, G. Wustmann, G. Hoffmann & G. Reuter, 1993. P transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics 133: 279–290.

    Google Scholar 

  • Eissenberg, J.C., T.C. James, D.M. Foster-Hartnett, T. Hartnett, V. Ngan & S.C.R. Elgin, 1990. Mutation in a heterochromatinspecific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 87: 9923-9927.

    Google Scholar 

  • Eissenberg, J.C. & S.C.R. Elgin, 2000. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Gen. Dev. 10: 204–210.

    Google Scholar 

  • Eissenberg, J.C., G.D. Morris, G. Reuter & T. Hartnett, 1992. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131: 345–352.

    Google Scholar 

  • Ekwall, K. & T. Ruusala, 1994. Mutations in rik1, cir2, clr3 and clr4 genes asymmetrically derepress the silent mating-type locus in fission yeast. Genetics 136: 53–64.

    Google Scholar 

  • Ekwall, K., E.R. Nimmo, J.P. Javerzat, B. Borgstrom, R. Egel, G. Cranston & R. Allshire, 1996. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell. Sci. 109: 2637-2648.

    Google Scholar 

  • Fanti, L., G. Giovinazzo, M. Berloco & S. Pimpinelli, 1998. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell. 2: 527–538.

    Google Scholar 

  • Finnin, M.S., J.R. Donigian, A. Cohen, V.M. Richon, R.A. Rifkind, P.A. Marks, R. Breslow & N.P. Pavletich, 1999. Structures of histone deacetylase homologue bound to TSA and SAHA. Nature 401: 188–193.

    Google Scholar 

  • Firestein, R., X. Cui, P. Huie & M.L. Cleary, 2000. SET-domain dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol. Cell. Biol. 20: 4900-4909.

    Google Scholar 

  • Gaudin, V., M. Libault, S. Pouteau, T. Juul, G. Zhao, D. Lefebvre & O. Grandjean, 2001. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128: 4847-4858.

    Google Scholar 

  • Hwang, K.K., J.C. Eissenberg & H.J. Worman, 2001. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl. Acad. Sci. USA 98: 11423-11427.

    Google Scholar 

  • Ivanova, A.V., M.J. Bonaduce, S.V. Ivanov & A.J.S. Klar, 1998. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat. Genet. 19: 192–195.

    Google Scholar 

  • Jackson, J.P., A.M. Lindroth, X. Cao & S.E. Jacobson, 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560.

    Google Scholar 

  • James, T.C. & S.C.R. Elgin, 1986. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6: 3862-3872.

    Google Scholar 

  • James, T.C., J.C. Eissenberg, C. Craig, V. Dietrich, A. Hobson & S.C.R. Elgin, 1989. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell. Biol. 50: 170–180.

    Google Scholar 

  • Jenuwein, T., G. Laible, R. Dorn & G. Reuter, 1998. SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell. Mol. Life Sci. 54: 80–93.

    Google Scholar 

  • Jones, R.S. & W.M. Gelbart, 1993. The Drosophila Polycombgroup gene Enhancer of zeste contains a region with seqeunce similarity to trithorax. Mol. Cell. Biol. 13: 6357-6366.

    Google Scholar 

  • Krauss, V. & G. Reuter, 2000. Two genes become one: the genes encoding heterochromatin protein SU(VAR)3-9 and translation initiation factor subunit eIF-2γ are joined to a dicistronic unit in holometabolic insects. Genetics 156: 1157-1167.

    Google Scholar 

  • Kuhfittig, S., J. Szabad, G. Schotta, J. Hoffmann, E. Máthé & G. Reuter, 2001. pitkin D a novel gain-of-function enhancer of position-effect variegation affects chromatin regulation during oogenesis and early embryogenesis in Drosophila. Genetics 157: 1227-1244.

    Google Scholar 

  • Lachner, M., D. O'Carroll, S. Rea, K. Mechtler & T. Jenuwein, 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Google Scholar 

  • Larsson, J., J. Zhang & A. Rasmuson-Lestander, 1996. Mutations in the Drosophila melanogaster S-adenosylmethionine synthase suppress position-effect variegation. Genetics 143: 887–896.

    Google Scholar 

  • Lefevre, G., 1976. The polytene chromosomes, pp. 31–66 in The Genetics and Biology of Drosophila, Vol. 1a, edited by M. Ashburner & E. Novitski. Academic Press, London, New York & San Francisco.

    Google Scholar 

  • Locke, J., M.A. Kotarski & K.D. Tartof, 1988. Dosage-dependent modifiers of position-effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120: 181–198.

    Google Scholar 

  • Maison, C., D. Bailly, A.H.F.M. Peters, J.-P. Quivy, D. Roche, A. Taddei, M. Lachner, T. Jenuwein & G. Almouzni, 2002. Higherorder structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30: 329–334.

    Google Scholar 

  • Melcher, M., M. Schmid, L. Aagaard, P. Selenko, G. Laible & T. Jenuwein, 2000. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation and mitotic progression. Mol. Cell. Biol. 20: 3728-3741.

    Google Scholar 

  • Mottus, R., R.E. Sobels & T.A. Grigliatti, 2000. Mutational analysis of a histone deacetylase in Drosophila melanogaster: missence mutations suppress gene silencing associated with position effect variegation. Genetics 154: 657–668.

    Google Scholar 

  • Muller, H.J., 1930. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22: 299–334.

    Google Scholar 

  • Nakayama, J., J.D. Rice, B.D. Stahl, C.D. Allis & S.I.S. Grenwal, 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Google Scholar 

  • O'Carroll, D., H. Scherthan, A.H. Peters, S. Opravil, A.R. Haynes, G. Laible, S. Rea, M. Schmid, A. Lebersorger, M. Jerratsch, L. Sattler, M.G. Mattei, P. Denny, S.D. Brown & T. Jenuwein, 2000. Isolation and characterization of Suvh39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20: 9423-9433.

    Google Scholar 

  • Peters, A.H.F.M., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schäfer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Oprival, M. Doyle, M. Sibilia & T. Jenuwein, 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Google Scholar 

  • Peters, A.H.F.M., J.E. Mermoud, D. O'Carroll, M. Pagani, D. Schweizer, N. Brockdorff & T. Jenuwein, 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30: 77–80.

    Google Scholar 

  • Raff, J.R., R. Kellum & B. Alberts, 1994. The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J. 13: 5977-5983.

    Google Scholar 

  • Reuter, G. & P. Spierer, 1992. Position-effect variegation and chromatin proteins. BioEssays 14: 605–612.

    Google Scholar 

  • Reuter, G. & J. Szidonya, 1983. Cytogenetic analysis of variegation suppressors and a dominant temperature sensitive lethal in region 23-26 of 2L in Drosophila melanogaster. Chromosoma 88: 277–285.

    Google Scholar 

  • Reuter, G. & I. Wolff, 1981. Isolation of dominant suppressor mutations for position-effect variegation. Mol. Gen. Genet. 182: 516–519.

    Google Scholar 

  • Reuter, G., H.J. Hoffmann & I. Wolff, 1983. Genetic study of position-effect variegation in Drosophila melanogaster: In(1)w m4h as a standard rearrangement for the isolation and characterization of suppressor and enhancer mutants. Biol. Zbl. 102: 281–298.

    Google Scholar 

  • Reuter, G., I. Wolff & B. Friede, 1985. Functional properties of the heterochromatic sequences inducing w m4 position-effect variegation in Drosophila melanogaster. Chromosoma 93: 132–139.

    Google Scholar 

  • Reuter, G., R. Dorn, G. Wustmann, B. Friede & G. Rauh, 1986. Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Mol. Gen. Genet. 202: 481–487.

    Google Scholar 

  • Reuter, G., J. Gausz, H. Gyurkovics, B. Friede, R. Bang, A. Spierer, L.M.C. Hall & P. Spierer, 1987. Modifiers of position-effect variegation in the region from 86C to 88B of the Drosophila melanogaster third chromosome. Mol. Gen. Genet. 210: 429–436.

    Google Scholar 

  • Reuter, G., N. Giarre, J. Farah, J. Gausz, A. Spierer & P. Spierer, 1990. Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344: 219–223.

    Google Scholar 

  • Schotta, G. & G. Reuter, 2000. Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Mol. Gen. Genet. 262: 916–920.

    Google Scholar 

  • Schotta, G., A. Ebert, V. Krauss, A. Fischer, J. Hoffmann, S. Rea, T. Jenuwein, R. Dorn & G. Reuter, 2002. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21: 1121-1131.

    Google Scholar 

  • Schultz, J., 1950. Interrelations of factors affecting heterochromatin-induced variegation in Drosophila. Genetics 35: 134.

    Google Scholar 

  • Shareef, M.M., C. King, M. Damaj, R. Badagu, D.W. Huang & R. Kellum, 2001. Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin induced silencing. Mol. Biol. Cell. 12: 1671-1685.

    Google Scholar 

  • Szidonya, J. & G. Reuter, 1988. Cytogenetic analysis of the echinoid(ed), dumpy(dp) and clot(cl) region in Drosophila melanogaster. Genet. Res. Camb. 51: 197–208.

    Google Scholar 

  • Tamaru, H. & E.U. Selker, 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.

    Google Scholar 

  • Török, T., M. Gorjanaczet, P.J. Bryant & I. Kiss, 2000. Prod is a novel DNA-binding protein that binds to the 1.686 g/cm3 10 bp satellite repeat of Drosophila melanogaster. Nucl. Acids. Res. 28: 3551-3557.

    Google Scholar 

  • Török, T., P.D. Harvie, M. Buratovich & P.J. Bryan, 1997. The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Gen. Dev. 11: 213–216.

    Google Scholar 

  • Tschiersch, B., A. Hofmann, V. Krauss, R. Dorn, G. Korge & G. Reuter, 1994. The protein encoded by the Drosophila position effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13: 3822-3831.

    Google Scholar 

  • Vaute, O., E. Nicolas, L. Vandal & D. Trouche, 2002. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucl. Acid. Res. 30: 475–481.

    Google Scholar 

  • Westphal, T. & G. Reuter, 2002. Crossing over suppression by heterochromatin and the dominant recombinogenic effects of suppressor of position-effect variegation mutations in Drosophila. Genetics 160: 609–621.

    Google Scholar 

  • Wustmann, G., J. Szidonya, H. Taubert & G. Reuter, 1989. The genetics of position-effect modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217: 520–527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schotta, G., Ebert, A. & Reuter, G. SU(VAR)3-9 is a Conserved Key Function in Heterochromatic Gene Silencing. Genetica 117, 149–158 (2003). https://doi.org/10.1023/A:1022923508198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022923508198

Navigation