Skip to main content
Log in

Convergence Dynamics of Delayed Hopfield-Type Neural Networks Under Almost Periodic Stimuli

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Convergence dynamics of Hopfield-type neural networks subjected to almost periodic external stimuli are investigated. In this article, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures. By employing Halanay inequalities, we obtain delay independent sufficient conditions for the networks to converge exponentially toward encoded patterns associated with the external stimuli. The networks are guaranteed to have exponentially hetero-associative stable encoding of the external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, C. T. H. and Tang, A.: Generalized Halanay inequalities for Volterra functional differential equations and discretized versions, In: C. Corduneanu and I. W. Sandberg (eds), Volterra Equations and Applications (Arlington, TX, 1996), Stability Control Theory Methods Appl. 10, Gordon and Breach, Amsterdam, 2000, pp. 39–55.

    Google Scholar 

  2. Besicovitch, A. S.: Almost Periodic Functions, Dover, New York, 1954.

    Google Scholar 

  3. Cooke, R. L.: Almost periodic functions, Amer. Math. Monthly 88 (1981), 515–526.

    Google Scholar 

  4. Corduneanu, C.: Almost Periodic Functions, Interscience Publ., New York, 1968.

    Google Scholar 

  5. van den Driessche, P. and Zou, X.: Global attractivity in delayed Hopfield neural network models, SIAM J. Appl. Math. 58 (1998), 1878–1890.

    Google Scholar 

  6. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H. J.: Coherent oscillations: A mechanism for feature linking in the visual cortex, Biol. Cybern. 60 (1988), 121–130.

    Google Scholar 

  7. Eckhorn, R., Reitboeck, H. J., Arndt, M. and Dicke, P.: Linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex, Neural Comput. 2 (1990), 293–307.

    Google Scholar 

  8. Engel, A. K., Kreiter, A. K., König, P. and Singer, W.: Synchronization of oscillatory neural responses between striate and extrastriate visual cortical areas of the cat, Proc. Natl. Acad. Sci. 88 (1991), 6048–6052.

    Google Scholar 

  9. Fang, Y. and Kincaid, G.: Stability analysis of dynamical neural networks, IEEE Trans. Neural Networks 7 (1996), 996–1006.

    Google Scholar 

  10. Fink, A. M.: Almost Periodic Differential Equations, Springer-Verlag, New York, 1974.

    Google Scholar 

  11. Forti, M., Manetti, S. and Marini, M.: A condition for global convergence of a class of symmetric neural circuits, IEEE Trans. Circuits Syst. 39 (1992), 480–483.

    Google Scholar 

  12. Forti, M., Manetti, S. and Marini, M.: Necessary and sufficient condition for absolute stability of neural networks, IEEE Trans. Circuits Syst. 41 (1994), 491–494.

    Google Scholar 

  13. Freeman, W. J. and Dijk, B. W.: Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey, Brain Res. 422 (1987), 267–276.

    Google Scholar 

  14. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Acad. Publ., Dordrecht, 1992.

    Google Scholar 

  15. Gopalsamy, K. and He, X. Z.: Stability in asymmetric Hopfield nets with transmission delays, Physica D 76 (1994), 344–358.

    Google Scholar 

  16. Gray, C. M., König, P., Engel, A. K. and Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties, Nature 388 (1989), 334–337.

    Google Scholar 

  17. Halanay, A.: Differential Equations, Academic Press, New York, 1966.

    Google Scholar 

  18. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn, Prentice-Hall, New Jersey, 1999.

    Google Scholar 

  19. Hirsch, M. W.: Convergent activation dynamics in continuous time networks, Neural Networks 2 (1989), 331–349.

    Google Scholar 

  20. Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA 81 (1984), 3088–3092.

    Google Scholar 

  21. Kelly, D. G.: Stability in contractive nonlinear neural networks, IEEE Trans. Biomed. Eng. 37 (1990), 231–242.

    Google Scholar 

  22. Kopell, N.: We got rhythm: Dynamical systems of the nervous system, Notices Amer. Math. Soc. 47 (2000), 6–16.

    Google Scholar 

  23. König, P. and Schillen, J. B.: Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization, Neural Comput. 3 (1991), 155–166.

    Google Scholar 

  24. LaSalle, L. P. and Lefschetz, S.: Stability by Lyapunov's Direct Method with Applications, Academic Press, New York, 1961.

    Google Scholar 

  25. Marcus, C. M. and Westervelt, R. M.: Stability of analog neural networks with delay, Phys. Rev. A 39 (1989), 347–359.

    Google Scholar 

  26. Matsuoka, K.: Stability conditions for nonlinear continuous neural networks with asymmetric connection weights, Neural Networks 5 (1992), 495–500.

    Google Scholar 

  27. Mohamad, S. and Gopalsamy, K.: Continuous and discrete Halanay-type inequalities, Bull. Austral. Math. Soc. 61 (2000), 371–385.

    Google Scholar 

  28. Yang, H. and Dillon, T. S.: Exponential stability and oscillation of Hopfield graded response neural networks, IEEE Trans. Neural Networks 5 (1994), 719–729.

    Google Scholar 

  29. Ye, H., Michel, A. N. and Wang, K.: Global stability and local stability of Hopfield neural networks with delays, Phys. Rev. E 50 (1994), 4206–4213.

    Google Scholar 

  30. Yi, Z.: Global exponential stability and periodic solutions of delay Hopfield neural networks, Internat. J. Systems Sci. 27 (1996), 227–231.

    Google Scholar 

  31. Yi, Z., Zhong, S. M. and Li, Z. L.: Periodic solutions and stability of Hopfield neural networks with variable delays, Internat. J. Systems Sci. 27 (1996), 895–901.

    Google Scholar 

  32. Yoshizawa, T.: Extreme stability and almost periodic solutions of functional-differential equations, Arch. Rat. Mech. Anal. 17 (1964), 148–170.

    Google Scholar 

  33. Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamad, S. Convergence Dynamics of Delayed Hopfield-Type Neural Networks Under Almost Periodic Stimuli. Acta Applicandae Mathematicae 76, 117–135 (2003). https://doi.org/10.1023/A:1022919917909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022919917909

Navigation