Skip to main content
Log in

Fragmentation of Cosmic Objects in the Course of Their Evolution and the Possible Role of Hubble Expansion in this Process

  • Published:
Astrophysics Aims and scope

Abstract

A series of phenomenological similarities between activity phenomena in the microscopic world and in the world of galaxies is examined. Proceeding from the high “metallicity” of quasars, it is shown that the relative amount of light elements, primarily hydrogen, increases during the evolution of the universe. Evidence supporting an analogous enrichment of the world of galaxies by dwarf galaxies is presented. A variant is proposed in which cD galaxies are the generators of the clusters of galaxies in which they are located, while all the galaxies of a given cluster are products of the activity of a central supergiant galaxy. An analogous mechanism is apparently responsible for the formation of systems of globular clusters. A physical connection between activity phenomena and cosmic expansion is sought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Shirokov and N. P. Yudin, Nuclear Physics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  2. G. Burbidge, Nature 233, 36 (1971).

    Google Scholar 

  3. P. A. La Violette, Astrophys. J. 301, 544 (1986).

    Google Scholar 

  4. J. S. Bagla, T. Padmanabhan, and J. V. Narlikar, Comments Astrophys. 18, 289 (1996).

    Google Scholar 

  5. M. J. Rees, H. Netzer, and G. J. Ferland, Astrophys. J. 347, 640 (1989).

    Google Scholar 

  6. R. Elston, K. L. Thompson, and G. J. Hill, Nature 367, 250 (1994).

    Google Scholar 

  7. F. Hamann, J. C. Shields, R. D. Cohen, V. T. Junkkarinen, and E. M. Burbidge, in: Emission Lines in Active Galaxies: New Methods and Techniques, B. M. Peterson, F.-Z. Cheng, and A. S. Wilson, eds., ASP Conf. Series 113, 96 (1997).

  8. D. A. Turnshek, in: Mass Ejection from Active Galactic Nuclei, N. Arav, I. Solosman, and R. J. Weymann, eds., ASP Conf. Series 128, 193 (1997).

  9. H. Arp and G. Burbidge, Astrophys. J. Lett. 353, L1 (1990).

    Google Scholar 

  10. G. A. Arutyunyan, Astrofizika 41, 217 (1998).

    Google Scholar 

  11. H. A. Harutyunian, in: Active Galactic Nuclei and Related Phenomena, Ye. Terzian, D. Weedman, and E. Khachikian, eds., IAU114, ASP Publ. 422 (1999).

  12. G. A. Arutyunyan and E. G. Nikogosyan, Astrofizika 43, 531 (2000).

    Google Scholar 

  13. V. A. Ambartsumyan, DAN Arm. SSR 23, 161 (1956).

    Google Scholar 

  14. V. A. Ambartsumyan, Izv. AN ArmSSR, ser. fiz.-mat. nauk 9, 23 (1956); 11, 9 (1958).

    Google Scholar 

  15. W. Baade and R. Minkowski, Astrophys. J. 119, 206, 222 (1954).

    Google Scholar 

  16. T. A. Matthews, W. W. Morgan, and M. Schmidt, Astrophys. J. 140, 35 (1964).

    Google Scholar 

  17. W. W. Morgan and J. R. Lesh, Astrophys. J. 142, 1346 (1965).

    Google Scholar 

  18. A. Oemler, Astrophys. J. 209, 693 (1976).

    Google Scholar 

  19. R. A. White, Astrophys. J. 226, 591 (1978).

    Google Scholar 

  20. T. C. Bears and M. J. Geller, Astrophys. J. 274, 491 (1983).

    Google Scholar 

  21. J. G. Hoessel and D. P. Schneider, Astron. J. 90, 1648 (1985).

    Google Scholar 

  22. J. L. Tonry, Astron. J. 90, 2431 (1985).

    Google Scholar 

  23. J. P. Ostriker and S. D. Tremain, Astrophys. J. Lett. 202, L113 (1975).

    Google Scholar 

  24. S. D. M. White, Mon. Notic. Roy. Astron. Soc. 174, 19 (1976).

    Google Scholar 

  25. J. P. Ostriker and M. A. Hausman, Astrophys. J. Lett. 217, L125 (1977).

    Google Scholar 

  26. D. Merritt, Astrophys. J. 289, 18 (1985).

    Google Scholar 

  27. T. Lauer, Astrophys. J. 325, 49 (1988).

    Google Scholar 

  28. J. Blakeslee and J. L. Tonry, Astron. J. 103, 1457 (1992).

    Google Scholar 

  29. A. Sandage, Astrophys. J. 205, 6 (1976).

    Google Scholar 

  30. A. Sandage, J. Kristian, and J. A. Westphal, Astrophys. J. 205, 688 (1976).

    Google Scholar 

  31. S. Tremain and D. O. Richstone, Astrophys. J. 212, 311 (1977).

    Google Scholar 

  32. M. J. West, Mont. Notic. Roy. Astron. Soc. 268, 79 (1994).

    Google Scholar 

  33. A. Garijo, E. Athanassoula, and C. Garcia-Gomez, Astron. Astrophys. 327, 930 (1997).

    Google Scholar 

  34. V. A. Ambartsumyan, DAN Arm. SSR 26, 73 (1958).

    Google Scholar 

  35. W. W. Morgan, S. Kayser, and R. A. White, Astrophys. J. 199, 545 (1975).

    Google Scholar 

  36. C. E. Albert, R. A. White, and W. W. Morgan, Astrophys. J. 211, 309 (1977).

    Google Scholar 

  37. T. X. Thuan and W. Romanishin, Astrophys. J. 248, 439 (1981).

    Google Scholar 

  38. J. M. Schombert, Astrophys. J. 328, 475 (1988).

    Google Scholar 

  39. K. S. Freeman, in: The Globular Cluster-Galaxy Connection, G. H. Smith and J. B. Brodie, eds., ASP Conf. Series 48, 608 (1993).

  40. S. van den Bergh, Ann. Rev. Astron. Astrophys. 13, 217 (1975).

    Google Scholar 

  41. J. R. Mould, J. B. Oke, P. T. de Zeeuw, and J. M. Nemec, Astron. J. 99, 1823 (1990).

    Google Scholar 

  42. S. van den Bergh, in: Structure and Dynamics of Globular Clusters, ASP Conf. Series 50, 1 (1993).

    Google Scholar 

  43. W. E. Harris, Ann. Rev. Astron. Astrophys. 29, 543 (1991).

    Google Scholar 

  44. S. van den Bergh, Publ. Astron. Soc. Pacif. 112, 932 (2000).

    Google Scholar 

  45. D. E. McLaughlin, W. E. Harris, and D. A. Hanes, Astrophys. J. 422, 486 (1994).

    Google Scholar 

  46. P. R. Durrel, W. E. Harris, D. Geisler, and R. E. Pudritz, Astron. J. 112, 972 (1996).

    Google Scholar 

  47. H. A. Harutyunian, Astrofizika 38, 667 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harutyunian, G.A. Fragmentation of Cosmic Objects in the Course of Their Evolution and the Possible Role of Hubble Expansion in this Process. Astrophysics 46, 81–91 (2003). https://doi.org/10.1023/A:1022919704947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022919704947

Keywords

Navigation