Skip to main content
Log in

On a Generalized Frobenius–Stickelberger Addition Formula

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this Letter we obtain a generalization of the Frobenius–Stickelberger addition formula for the (hyperelliptic) σ-function of a genus 2 curve in the case of three vector-valued variables. The result is given explicitly in the form of a polynomial in Kleinian ℘-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, H. F.: On the hyperelliptic sigma functions, Amer. J. Math. 20 (1898), 301–384.

    Google Scholar 

  2. Baker, H. F.: Multiply Periodic Functions, Cambridge Univ. Press, Cambridge, 1907.

    Google Scholar 

  3. Baker, H. F.: Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897.

    Google Scholar 

  4. Barsotti, I.: Differential equations of theta functions, Rend. Accad. Naz. Sci. Mem. Mat. (5) 7 (1983), 227–276.

    Google Scholar 

  5. Buchstaber, V. M., Enolskii, V. Z. and Leykin, D. V.: Hyperelliptic Kleinian functions and applications, In: V. M. Buchstaber and S. P. Novikov (eds), Solitons, Geometry and Topology: On the Crossroad, Adv. in Math. Sci. 179, Amer. Math. Soc., Providence, Moscow State University and University of Maryland, College Park, 1997, pp. 1–34.

    Google Scholar 

  6. Buchstaber, V. M.: Kleinian functions, hyperelliptic Jacobians and applications, In: S. P. Novikov and I. M. Krichever (eds), Rev. Math. and Math. Phys. 10(2) Gordon and Breach, London, 1997, pp. 1–125.

    Google Scholar 

  7. Buchstaber, V. M.: A recursive family of differential polynomials generated by Sylvester's identity and addition theorems for hyperelliptic Kleinian functions, Funct. Anal. Appl. 31(4) (1997), 240–251.

    Google Scholar 

  8. Buchstaber, V. M. and Leykin, D. V.: Graded Lie algebras that define hyperelliptic sigma functions, Dokl. Akad. Nauk 385(5) (2002), English transl. Dokl. Math. Sci. 66, 4/2, 2002.

  9. Brioschi, F.: Sur quelques formules pour la multiplication des fonctions elliptiques, C. R. Acad. Sci. Paris 59 (1864), 769–775.

    Google Scholar 

  10. Fay, J. D.: Theta Functions on Riemann Surfaces, Lecture Notes in Math. 352, Springer, New York, 1973.

    Google Scholar 

  11. Frobenius, G. and Stickelberger, L.: Zur Theorie der elliptischen Functionen, J. reine angew. Math. 83 (1877), 175–179.

    Google Scholar 

  12. Grant, D.: A generalization of a formula of Eisenstein, Proc. London Math. Soc. 62 (1991), 121–132.

    Google Scholar 

  13. Jorgenson, J.: On directional derivatives of the theta function along its divisor, Israel J. Math. 77 (1992), 274–284.

    Google Scholar 

  14. Kiepert, L.: Wirkliche Ausführung der ganzzahlingen Multiplikation der elliptichen Funktionen, J. reine angew. Math. 76 (1873), 21–33.

    Google Scholar 

  15. Klein, F.: Ñber hyperelliptische Sigmafunctionen, Math. Ann. 32 (1888), 351–380.

    Google Scholar 

  16. Krichever, I. M.: Elliptic solutions of Kadomtsev—Petviashvili equation and integrable particle systems, Funct. Anal. Appl. 14 (1980), 45–54.

    Google Scholar 

  17. Ônishi, Y.: Determinant expressions for hyperelliptic functions (with an appendix by Shigeki Matsutani), Preprint NT/0105189, 2002.

  18. Ônishi, Y.: Determinant expressions for some Abelian functions in genus two, Glasgow Math. J. 44 (2002), 353–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eilbeck, J.C., Enolskii, V.Z. & Previato, E. On a Generalized Frobenius–Stickelberger Addition Formula. Letters in Mathematical Physics 63, 5–17 (2003). https://doi.org/10.1023/A:1022918717546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022918717546

Navigation