Skip to main content
Log in

Selenium Removal from Irrigation Drainage Water Flowing Through Constructed Wetland Cells with Special Attention to Accumulation in Sediments

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A flow-through experimental wetland system has been under investigation since 1996 to remove selenium (Se) fromagricultural drainage water in the Tulare Lake Drainage Districtat Corcoran, California, U.S.A. The system consists of ten cellswhich have dimensions of 15 × 76 m continuously flooded andvarious substrates planted. The objectives of this article are topresent the overall performance in Se removal after establishingthe wetland for three years, and to examine factors affecting Seremoval with special attention to accumulation in the sediments.In 1999, The wetland cells reduced Se from inflow water by 32 to65% in concentration and 43 to 89% in mass. Vegetationplays an important role in Se removal as non-vegetated cellshowed the least removal of Se. The inflow drainage water wasdominated by selenate (Se(VI), 91%) with smaller percentages ofselenite (Se(IV), 7%) and organic Se (org-Se(II-), 2%). Theoutflow water from the cells contained an average of 47% Se(VI),32% Se(IV) and 21% org-Se indicating reduction processesoccurring in the wetland cells. The surface sediment appears as alarge sink of Se removal. The highest Se concentration was foundin fallen litter, followed by the fine organic detrital layer onthe sediment surface. The sediment Se concentration dramaticallydecreased with increasing sediment depth. The mass distribution of Se, however, was sediment (0-20 cm) > fine detrital matter >fallen litter. Fractionation of surface sediment (0-5 cm) reveals that elemental Se was the largest fraction (ave. 47%) followedby organic matter-associated Se (34%). Soluble, adsorbed, and carbonate-associated Se accounted for 1.2, 3.1 and 2.5% ofthe total sediment Se, respectively. The major Se sink mechanism in the cells is the reduction of selenate to elemental Se andimmobilization into the organic phase of the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, S. M., Delamore, M. and Hoffman, S.: 1993, ‘Kesterson Crisis’, J. Irrig. Drain Eng., ASCE 119, 471-483.

    Google Scholar 

  • Brown, D. S. and Reed, S. C.: 1994, ‘Inventory of constructed wetlands in the United States’, Water Sci. Technol. 29, 309-318.

    Google Scholar 

  • Chao, T. T. and Sanzolone, R. F.: 1989, ‘Fractionation of soil selenium by sequential partial dissolution’, Soil Sci. Soc. Am. J. 53, 385-392.

    Google Scholar 

  • Cooper, P. F. and Findlater, B. C.: 1990, Constructed Wetlands in Water Pollution Control, Pergamon Press, London.

    Google Scholar 

  • Cutter, G. A.: 1982, ‘Selenium in reducing waters’, Science 217, 829-831.

    Google Scholar 

  • Drainage Water Treatment Technical Committee: 1999, ‘Drainage Water Treatment’, Final Report, Task 2, The San Joaquin Valley Drainage Implementation Program and The University of California Salinity/Drainage Program. University of California, Riverside.

    Google Scholar 

  • Evaporation Ponds Technical Committee: 1999, ‘Evaporation Ponds’, Final Report, Task 4, The San Joaquin Valley Drainage Implementation Program and the University of California Salinity/ Drainage Program. University of California, Riverside.

    Google Scholar 

  • Fujii, R., Deverel, S. J. and Hatfield, D. B.: 1988, ‘Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California’, Soil Sci. Soc. Am. J. 52, 1274-1283.

    Google Scholar 

  • Gao, S., Tanji, K. K., Peters, D.W. and Herbel, M. J.: 2000, ‘Water selenium speciation and sediment fractionation in a California flow-through wetland system’, J. Environ. Qual. 29, 1275-1283.

    Google Scholar 

  • Hansen, D. P. J., Zayed, D. A. and Terry, N.: 1998, ‘Selenium removal by constructed wetlands: Role of biological volatilization’, Environ. Sci. Technol. 32, 591-597.

    Google Scholar 

  • Huang, P. M. and Fujii, R.: 1996, ‘Selenium and Arsenic’, in D. L. Sparks (ed.), Methods of Soil Analysis. Part 3. Chemical Methods, SSSA Book Series No. 5. Soil Science Society of America, Inc., Madison, WI., pp. 793-831.

    Google Scholar 

  • Kadlec, R. H.: 1989. ‘Hydrologic Factors in Wetland Water Treatment’, in D. A. Hammer (ed.), Constructed Wetlands for Wastewater Treatment, Lewis Pub., Inc., Chelsea, MI.

    Google Scholar 

  • Kadlec, R. H. and Knight, R. L.: 1996, Treatment Wetlands, Lewis Pub., Boca Raton.

    Google Scholar 

  • Lee, E. W.: 1993, ‘Treatment, reuse, and disposal of drain waters’, J. Irrig. Drain Eng., ASCE 119, 501-513.

    Google Scholar 

  • Lemly, A. D.: 1995, ‘A protocol for aquatic hazard assessment of selenium’, Ecotox. Environ. Saf. 32(3), 280-288.

    Google Scholar 

  • Lemly, A. D.: 1998, ‘A position paper on selenium ecotoxicology: A procedure for deriving sitespecific water quality criteria’, Ecotox. Environ. Saf. 39, 1-9.

    Google Scholar 

  • Lemly, A. D., Finger, S. E. and Nelson, M. K.: 1993, ‘Sources and impacts of irrigation drainage contaminants in arid wetlands’, Environ. Toxicol. Chem. 12, 2265-2279.

    Google Scholar 

  • Lin, Z.-Q. and Terry, N.: 2000, ‘Use of flow-through constructed wetlands for the remediation of selenium in agricultural tile-drainage water’, in U.C. Salinity/Drainage Program Annual Report 1999-2000, University of California, Riverside, pp. 192-227.

    Google Scholar 

  • Lipton, D. S.: 1991, ‘Associations of Selenium with Inorganic and Organic Constituents in Soils of a Semi-Arid Region’, Ph.D. Dissertation, UC Berkeley.

    Google Scholar 

  • Martens, D. A. and Suarez, D. L.: 1997, ‘Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry’, Environ. Sci. Technol. 31, 133-139.

    Google Scholar 

  • Oremland, R. S., Steinberg, N. A., Maest, A. S., Miller, L. G. and Hollibaugh, J. T.: 1990, ‘Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction I sediments’, Environ. Sci. Technol. 24, 1157-1164.

    Google Scholar 

  • Schuler, C. A., Anthony, R. G. and Ohlendorf, H. M.: 1990, ‘Selenium in wetlands and waterfowl foods at Kesterson Reservoir, California, 1984’, Arch. Environ. Contam. Toxicol. 19, 845-853.

    Google Scholar 

  • Seiler, R. L.: 1995, ‘Predictions of areas where irrigation drainage may induce selenium contamination of water’, J. Environ. Qual. 24, 973-979.

    Google Scholar 

  • Tanji, K. K., Lauchli, A. and Meyer, J.: 1986, ‘Selenium in the San Joaquin Valley’, Environment 28(6), 6-39.

    Google Scholar 

  • Tokunaga, T. K., Pickering, I. J. and Brown Jr., G. E.: 1996, ‘Selenium transformations in ponded sediments’, Soil Sci. Soc. Am. J. 60, 781-790.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA): 1998, Report on the Peer Consultation Workshop on Selenium Aquatic Toxicity and Bioaccumulation, Publication EPA-822-R-98-007, USEPA, Office of Water, Washington, DC.

    Google Scholar 

  • Velinsky, D. J. and Cutter, G. A.: 1990, ‘Determination of elemental selenium and pyrite-selenium in sediment’, Anal. Chim. Acta 235, 419-425.

    Google Scholar 

  • Weres, O., Jaouni, A. R. and Tsao, L.: 1989, ‘The distribution, speciation and geochemical cycling of selenium in a sedimentary environment, Kesterson Reservoir, California, U.S.A.’, Appl. Geochem. 4, 543-563.

    Google Scholar 

  • Yoshimoto, J. T.: 1992, ‘Potential Mechanisms Controlling Soluble Selenite in Sierran Sands’, Master’s Thesis, University of California, Davis.

    Google Scholar 

  • Zasoski, R. J. and Burau, R. G.: 1977, ‘A rapid nitric-perchloric acid digestion procedure for multielement tissue analysis’, Commun. Soil Sci. Plant Anal. 8, 425-436.

    Google Scholar 

  • Zawislanski, P. T. and Zavarin, M.: 1996, ‘Nature and rates of selenium transformations: a laboratory study of Kesterson Reservoir soils’, Soil Sci. Soc. Am. J. 60, 791-800.

    Google Scholar 

  • Zhang, Y. Q. and Moore, J. N.: 1996, ‘Selenium fractionation and speciation in a wetland system’, Environ. Sci. Technol. 30, 2613-2619.

    Google Scholar 

  • Zhang, Y. Q. and Moore, J. N.: 1997, ‘Interaction of selenate with a wetland sediment’, Appl. Geochem. 12, 685-691.

    Google Scholar 

  • Zhang, Y. Q. and Moore, J. N.: 1998, ‘Selenium Accumulation in a Wetland Channel, Benton Lake, Montana’, in W. T. Frankenberger Jr. and R. A. Engberg (eds), Environmental Chemistry of Selenium, Marcel Dekker, Inc., New York, pp. 243-257.

    Google Scholar 

  • Zhang, Y. Q., Moore, J. N. and Frankenberger Jr., W. T.: 1999, ‘Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry’, Environ. Sci. and Technol. 33, 1652-1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suduan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Tanji, K.K., Peters, D.W. et al. Selenium Removal from Irrigation Drainage Water Flowing Through Constructed Wetland Cells with Special Attention to Accumulation in Sediments. Water, Air, & Soil Pollution 144, 263–284 (2003). https://doi.org/10.1023/A:1022915515425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022915515425

Navigation