Skip to main content
Log in

Drosophila morgue and the intersection between protein ubiquitination and programmed cell death

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In Drosophila, cell survival decisions are mediated by the integrated functions of the Grim-Reaper death activators and Inhibitor-of-Apoptosis-Proteins (IAPs), such as DIAP1, to regulate caspase activities. We recently identified a gene that enhances the actions of the Grim-Reaper proteins and negatively regulates the levels of DIAP1 protein. This gene, morgue, encodes a novel protein that contains both an F box and a ubiquitin conjugase domain. Interestingly, the Morgue conjugase domain lacks the active site cysteine required for covalent linkage to ubiquitin. Morgue could target IAPs and other proteins for ubiquitination and proteasome-dependent turnover by acting either in an SCF ubiquitin E3 ligase complex, or as a ubiquitin E2 conjugase enzyme variant (UEV) in conjunction with a catalytically active E2 conjugase. Morgue is evolutionarily conserved, as a Morgue ortholog was identified from the mosquito, Anopheles gambiae. Elucidation of morgue function should provide novel insights into the mechanisms of ubiquitination and programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudin CM, Thompson CB. Apoptosis and disease: Regulation and clinical relevance of programmed cell death. Annu Rev Med 1997; 48: 267–281.

    Google Scholar 

  2. Bellamy CO, Malcomson RD, Harrison DJ, Wyllie AH. Cell death in health and disease: The biology and regulation of apoptosis. Semin Cancer Biol 1995; 6: 3–16.

    Google Scholar 

  3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Google Scholar 

  4. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev 2002; 82: 373–428.

    Google Scholar 

  5. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503–533.

    Google Scholar 

  6. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    Google Scholar 

  7. Grimm LM, Osborne BA. Apoptosis and the proteasome. Results Probl Cell Differ 1999; 23: 209–228.

    Google Scholar 

  8. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999; 6: 303–313.

    Google Scholar 

  9. Wojcik C. Proteasomes in apoptosis: Villains or guardians? Cell Mol Life Sci 1999; 56: 908–917.

    Google Scholar 

  10. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96: 11364–11369.

    Google Scholar 

  11. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its antiapoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001; 98: 8662–8667.

    Google Scholar 

  12. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874–877.

    Google Scholar 

  13. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Google Scholar 

  14. Salvesen GS, Dixit VM. Caspase activation: The inducedproximity model. Proc Natl Acad Sci USA 1999; 96: 10964–10967.

    Google Scholar 

  15. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    Google Scholar 

  16. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993; 67: 2168–2174.

    Google Scholar 

  17. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001; 2: Reviews3009.

  18. Miller LK. An exegesis of IAPs: Salvation and surprises from BIR motifs. Trends Cell Biol 1999; 9: 323–328.

    Google Scholar 

  19. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13: 239–352.

    Google Scholar 

  20. Hay BA. Understanding IAP function and regulation: A view from Drosophila. Cell Death Differ 2000; 7: 1045–1056.

    Google Scholar 

  21. Peterson C, Carney GE, Taylor BJ, White K. reaper is required for neuroblast apoptosis during Drosophila development. Development 2002; 129: 1467–1476.

    Google Scholar 

  22. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci USA 1997; 94: 5131–5136.

    Google Scholar 

  23. Chen P, Nordstrom W, Gish B, Abrams JM. grim, a novel cell death gene in Drosophila. Genes Dev 1996; 10: 1773–1782.

    Google Scholar 

  24. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995; 9: 1694–1708.

    Google Scholar 

  25. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994; 264: 677–683.

    Google Scholar 

  26. Srinivasula SM, Datta P, Kobayashi M, et al. sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr Biol 2002; 12: 125–130.

    Google Scholar 

  27. Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell 2001; 8: 95–104.

    Google Scholar 

  28. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 2000; 19: 589–597.

    Google Scholar 

  29. Lisi S, Mazzon I, White K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 2000; 154: 669–678.

    Google Scholar 

  30. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999; 98: 453–463.

    Google Scholar 

  31. Wilson R, Goyal L, Ditzel M, et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 2002; 4: 445–450.

    Google Scholar 

  32. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Google Scholar 

  33. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Google Scholar 

  34. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    Google Scholar 

  35. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000; 408: 1004–1008.

    Google Scholar 

  36. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012.

    Google Scholar 

  37. Hays R, Wickline L, Cagan R. Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nat Cell Biol 2002; 4: 425–431.

    Google Scholar 

  38. Wing JP, Schreader BA, Yokokura T, et al. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nat Cell Biol 2002; 4: 451–456.

    Google Scholar 

  39. Bangs P, White K. Regulation and execution of apoptosis during Drosophila development. Dev Dyn 2000; 218: 68–79.

    Google Scholar 

  40. Vernooy SY, Copeland J, Ghaboosi N, Griffin EE, Yoo SJ, Hay BA. Cell death regulation in Drosophila: Conservation of mechanism and unique insights. J Cell Biol 2000; 150: F69–76.

    Google Scholar 

  41. Abrams JM. An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol 1999; 9: 435–440.

    Google Scholar 

  42. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101: 103–113.

    Google Scholar 

  43. Jiang C, Lamblin AF, Steller H, Thummel CS. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 2000; 5: 445–455.

    Google Scholar 

  44. Lohmann I, McGinnis N, Bodmer M, McGinnis W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 2002; 110: 457–466.

    Google Scholar 

  45. Kurada P, White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 1998; 95: 319–329.

    Google Scholar 

  46. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. Circadian regulation of gene expression systems in the Drosophila head. Neuron 2001; 32: 657–671.

    Google Scholar 

  47. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature 2002; 417: 329–335.

    Google Scholar 

  48. Young MW, Kay SA. Time zones: A comparative genetics of circadian clocks. Nat Rev Genet 2001; 2: 702–715.

    Google Scholar 

  49. Jin J, Harper JW. RING finger specificity in SCF-driven protein destruction. Dev Cell 2002; 2: 685–687.

    Google Scholar 

  50. Kipreos ET, Pagano M. The F-box protein family. Genome Biol 2000; 1: Reviews3002.

  51. Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: Don’t Skp the F-box hypothesis. Trends Genet 1998; 14: 236–243.

    Google Scholar 

  52. Zheng N, Schulman BA, Song L, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416: 703–709.

    Google Scholar 

  53. Sancho E, Vila MR, Sanchez-Pulido L, et al. Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Mol Cell Biol 1998; 18: 576–589.

    Google Scholar 

  54. Xiao W, Lin SL, Broomfield S, Chow BL, Wei YF. The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) define a structurally and functionally conserved Ubc-like protein family. Nucleic Acids Res 1998; 26: 3908–3914.

    Google Scholar 

  55. Bailly V, Lamb J, Sung P, Prakash S, Prakash L. Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 1994; 8: 811–820.

    Google Scholar 

  56. Sung P, Prakash S, Prakash L. Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol 1991; 221: 745–749.

    Google Scholar 

  57. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419: 135–141.

    Google Scholar 

  58. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 2002; 4: 432–438.

    Google Scholar 

  59. Zheng N, Wang P, Jeffrey PD, Pavletich NP. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitinprotein ligases. Cell 2000; 102: 533–539.

    Google Scholar 

  60. Zdobnov EM, Von Mering C, Letunic I, et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002; 298: 149–159.

    Google Scholar 

  61. Holt RA, Subramanian GM, Halpern A, et al. The Genome sequence of the malaria mosquito Anopheles gambiae. Science 2002; 298: 129–149.

    Google Scholar 

  62. Holley CL, Olson MR, Colon-Ramos DA, Kornbluth S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat Cell Biol 2002; 4: 439–444.

    Google Scholar 

  63. Yoo SJ, Huh JR, Muro I, et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 2002; 4: 416–424.

    Google Scholar 

  64. Vernooy SY, Chow V, Su J. Drosophila bruce can potently suppress rpr-and grim-dependent but not hid-dependent cell death. Curr Biol 2002; 12: 1164–1168.

    Google Scholar 

  65. Olson MR, Holley CL, Yoo SJ, et al. Reaper is regulated by IAP-mediated ubiquitination. J Biol Chem 2003; 278: 4028–4034.

    Google Scholar 

  66. MacFarlane M, Merrison W, Bratton SB, Cohen GM. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 2002; 277: 36611–36616.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreader, B.A., Wang, Y. & Nambu, J.R. Drosophila morgue and the intersection between protein ubiquitination and programmed cell death. Apoptosis 8, 129–139 (2003). https://doi.org/10.1023/A:1022914524601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022914524601

Navigation