Skip to main content
Log in

Geometric Approach to Response Theory in Non-Hamiltonian Systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The theory of differential forms and time-dependent vector fields on manifolds is applied to formulate response theory for non-Hamiltonian systems. This approach is manifestly coordinate-free, and provides a transparent derivation of the response of a thermostatted system to a time-dependent perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J.E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, MA, 1978).

    Google Scholar 

  2. B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980).

    Google Scholar 

  3. R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  4. B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry–Methods and Applications, Part I. The Geometry of Surfaces, Transformation Groups, and Fields (Springer-Verlag, New York, 1992).

    Google Scholar 

  5. T. Frankel, The Geometry of Physics (Cambridge University Press, Cambridge 1997).

    Google Scholar 

  6. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York 1978.

    Google Scholar 

  7. J.V. José and E.J. Saletan, Classical Dynamics (Cambridge University Press Cambridge 1998.

    Google Scholar 

  8. J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag New York 1999.

    Google Scholar 

  9. S.F. Singer, Symmetry in Mechanics (Birkhauser New York 2001.

    Google Scholar 

  10. J. Liouville, Sur la Théorie de la Variation des constantes arbitraires J. Math. Pures Appl. 3 (1838 342-349.

    Google Scholar 

  11. S. Guiasu, La Méchanique statistique non conservative Rev. Roum. Math. Pures Appl. 11 (1966 541-557.

    Google Scholar 

  12. G. Gerlich, Die Verallgemeinerte Liouville-Gleichung Physica 69 (1973) 458-466.

    Article  Google Scholar 

  13. W.-H. Steeb, The Lie derivative invariance conditions and physical laws Z. Naturforsch. A 33 (1978) 742-748.

    Google Scholar 

  14. W.-H. Steeb, Generalized Liouville equation entropy and dynamic systems containing limit cycles Physica A 95 (1979) 181-190.

    Google Scholar 

  15. L. Andrey, The rate of entropy change in non-Hamiltonian systems Phys. Lett. A 111 (1985) 45-46.

    Article  Google Scholar 

  16. L. Andrey, Note concerning the paper “The rate of entropy change in non-Hamiltonian systems” Phys. Lett. A 114 (1986) 183-184.

    Article  Google Scholar 

  17. J.D. Ramshaw, Remarks on entropy and irreversibility in non-Hamiltonian systems Phys. Lett. A 116 (1986 110-114.

    Article  Google Scholar 

  18. M.E. Tuckerman, C.J. Mundy and M.L. Klein, Toward a statistical thermodynamics of steady states Phys. Rev. Lett. 78(1997) 2042-2045.

    Article  Google Scholar 

  19. M.E. Tuckerman, C.J. Mundy and G.J. Martyna On the classical statistical mechanics of non-Hamiltonian systems Europhys. Lett. 45 (1999) 149-155.

    Article  Google Scholar 

  20. S. Melchionna, Constrained systems and statistical distribution Phys. Rev. E 61 (2000) 6165-6170.

    Article  Google Scholar 

  21. M.E. Tuckerman, Y. Liu, G. Ciccotti and G.J. Martyna, Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems J. Chem. Phys. 115 (2001) 1678-1702.

    Article  Google Scholar 

  22. D.J. Evans and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic New York 1990.

    Google Scholar 

  23. W.G. Hoover, Computational Statistical Mechanics (Elsevier New York 1991.

    Google Scholar 

  24. G.P. Morriss and C.P. Dettmann, Thermostats: Analysis and application CHAOS 8 (1998) 321-336.

    Article  PubMed  Google Scholar 

  25. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press Cambridge 1999).

    Google Scholar 

  26. S. Nosé, Constant temperature molecular dynamics methods Prog. Theor. Phys. Suppl. 103 (1991) 1-46.

    Google Scholar 

  27. B.L. Holian, W.G. Hoover and H.A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomic dynamics Phys. Rev. Lett. 59 (1987) 10-13.

    Article  Google Scholar 

  28. B.L. Holian and D.J. Evans, Classical response theory in the Heisenberg picture J. Chem. Phys. 83 (1985) 3560-3566.

    Article  Google Scholar 

  29. B.L. Holian, Classical response theory propagators: An illustrative example J. Chem. Phys. 84 (1986) 1762-1763.

    Article  Google Scholar 

  30. C.J. Mundy, S. Balasubramanian, K. Bagchi, M.E. Tuckerman, G.J. Martyna and M.L. Klein, Nonequilibrium Molecular Dynamics Reviews in Computational Chemistry Vol. 14 (Wiley-VCH New York 2000 pp. 291-397).

    Google Scholar 

  31. P. Reimann, Comment on “Toward a statistical thermodynamics of steady states” Phys. Rev. Lett. 80 (1998) 4104.

    Article  Google Scholar 

  32. W.G. Hoover, D.J. Evans, H.A. Posch, B.L. Holian and G.P. Morriss, Comment on “Toward a statistical thermodynamics of steady states” Phys. Rev. Lett. 80 (1998) 4103.

    Article  Google Scholar 

  33. M.E. Tuckerman, C.J. Mundy and M.L. Klein, Reply to comment on “Toward a statistical thermodynamics of steady states” Phys. Rev. Lett. 80 (1998) 4105-4106.

    Article  Google Scholar 

  34. W.G. Hoover, Liouville's theorems Gibbs' entropy, and multifractal distributions for nonequilibrium steady states J. Chem. Phys. 109 (1998) 4164-4170.

    Article  Google Scholar 

  35. W.-J. Tzeng and C.-C. Chen, The statistical thermodynamics of steady states Phys. Lett. A 246 (1998) 52-54.

    Article  Google Scholar 

  36. W.G. Hoover, The statistical thermodynamics of steady states Phys. Lett. A 255 (1999) 37-41.

    Article  Google Scholar 

  37. J.D. Ramshaw, Remarks on non-Hamiltonian statistical mechanics Europhys. Lett. 59 (2002) 319-323.

    Article  Google Scholar 

  38. G.S. Ezra, On the statistical mechanics of non-Hamiltonian systems: The generalized Liouville equation, entropy, and time-dependent metrics, Preprint (2002).

  39. P. Choquard, Variational principles for thermostatted systems CHAOS 8 (1998) 350-356.

    Article  PubMed  Google Scholar 

  40. M. Pettini, Geometrical hints for a nonperturbative approach to Hamiltonian dynamics Phys. Rev. E 47 (1993) 828-850.

    Article  Google Scholar 

  41. L. Casetti, M. Pettini and E.G.D. Cohen, Geometric approach to Hamiltonian dynamics and statistical mechanics Phys. Rep. 337 (2000) 238-341.

    Article  Google Scholar 

  42. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag New York 1990.

    Google Scholar 

  43. W.G. Hoover, Canonical dynamics: Equilibrium phase space distributions J. Chem. Phys. 31 (1985) 1695-1697.

    Google Scholar 

  44. H.A. Posch, W.G. Hoover and F.J. Vesely, Canonical dynamics of the Nosé oscillator: Stability order and chaos Phys. Rev. A 33 (1986) 4253-4265.

    Article  PubMed  Google Scholar 

  45. S. Tiwari and R. Ramaswamy, Nosé–Hoover dynamics of a nonintegrable Hamiltonian system J. Mol. Struct. (Theochem) 361 (1996) 111-116.

    Article  Google Scholar 

  46. B.L. Holian, G. Ciccotti, W.G. Hoover, B. Moran and H.A. Posch, Nonlinear-response theory for time-independent fields: Consequences of the fractal nonequilibrium distribution function Phys. Rev. A 39 (1989) 5414-5421.

    Article  PubMed  Google Scholar 

  47. R.D. Levine and C.E. Wulfman, A unified description of regular and chaotic motion in classical mechanics Chem. Phys. Lett. 87 (1982) 105-108.

    Article  Google Scholar 

  48. A. Lasota and M.C. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge University Press Cambridge 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezra, G.S. Geometric Approach to Response Theory in Non-Hamiltonian Systems. Journal of Mathematical Chemistry 32, 339–360 (2002). https://doi.org/10.1023/A:1022901505641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022901505641

Navigation