Skip to main content
Log in

On a Banach space approximable by Jacobi polynomials

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let X represent either the space C[-1,1] L p (α,β) (w), 1 ≦ p < ∞ on [-1, 1]. Then Xare Banach spaces under the sup or the p norms, respectively. We prove that there exists a normalized Banach subspace X 1 αβ of Xsuch that every f ∈ X 1 αβ can be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Our method to prove such an approximation problem is Fourier–Jacobi analysis based on the convergence of Fourier–Jacobi expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenes

  1. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 23 (1972), 71-85.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. M. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR. Sbornik, 24 (1974), 223-255.

    Article  Google Scholar 

  3. H. Bavinck, A special class of Jacobi series and some applications, Mathematical Analysis and Applications, 37 (1972), 767-797.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Lasser and J. Obermaier, On the convergence of weighted Fourier expansions with respect to orthogonal polynomials, Acta Sci. Math. (Szeged), 60 (1995), 345-355.

    MathSciNet  Google Scholar 

  5. Zh.-K. Li, Approximation of the Jacobi-Weyl class of functions by the partial sums of Jacobi expansions, in: Approximation Theory and Function Series (Budapest), Bolyai Society Mathematical Studies, 5 (1996), pp. 247-258.

  6. A. Máté, P. Nevai and V. Totik, Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory, 46 (1986), 314-322.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation, World Scientific (Singapore, 1996).

    Google Scholar 

  8. P. Nevai, Orthogonal Polynomials, Memoirs Amer. Math. Soc., 213 Amer. Mathematical Soc. (Providence, RI, 1979).

    Google Scholar 

  9. J. Newman and W. Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc., 3 (1952), 219-222.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Pollard, The mean convergence of orthogonal polynomial series I, Trans. Amer. Math. Soc., 62 (1947), 387-403.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Pollard, The mean convergence of orthogonal polynomial series II, Trans. Amer. Math. Soc., 63 (1948), 355-367.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Pollard, The mean convergence of orthogonal polynomial series III, Duke Math. J., 16 (1949), 189-191.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Riesz, Sur les functions conjugées, Math. Z., 27 (1927), 218-244.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. G. Shi, Bounds and inequalities for general orthogonal polynomials on finite intervals, J. Approx. Theory, 73 (1993), 303-333.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Coll. Publ., Vol. XXIII 3rd ed. (New York, 1967).

  16. Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials I, J. Approx. Theory, 72 (1993), 237-251.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials II, J. Approx. Theory, 76 (1994), 77-92.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. P. Yadav, On the saturation order of approximation processes involving Jacobi polynomials, J. Approx. Theory, 58 (1989), 36-49.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. P. Yadav, Saturation orders of some approximation processes in certain Banach spaces, Studia Sci Math. Hungar., 28 (1993), 1-18.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S.P. On a Banach space approximable by Jacobi polynomials. Acta Mathematica Hungarica 98, 21–30 (2003). https://doi.org/10.1023/A:1022897019476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022897019476

Navigation