Skip to main content
Log in

Quantitative Evaluation of Water Deposited By Dew on Monuments

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Samples of White and Green Carrara marble, and three types oflimestone and brick exposed in the field vertically and horizontally were used to evaluate condensationon monuments during clear sky nights. Experiments in a simulation chamber under controlledconditions led to a general equation for the actual amount of water deposited on a surface by dew.This is determined by: How much and for how long the surface temperature falls below the dew point,the moisture content in the air and the ventilation. On clear nights, the condensation on buildingstructures facing the sky may reach some 0.2 kg m-2 (or 0.2 mm), whereas condensation on verticalsurfaces is very small. Computation of the seasonal trend of night-time condensationshowed that the maximum amount of water condensed per night occurs in the autumn, with the moreabundant concentration of moisture in the air. The total amount of water condensed per month isfound to be a maximum in the summer-autumn period. Morning condensationfor the thermal inertia of monuments is also relevant, and has been calculated to reach the same order of magnitude as thenocturnal dew. A detailed analysis of the temperature and mixing ratio profiles near a condensingsurface has shown two different situations. In still air, the two profiles follow an exponentiallaw and the thermal and the concentration layers lie within a few tens of millimetres. Inthe presence of turbulence, the thickness of these two layers is dramatically reduced. In still air, infront of a vertical, chilly surface, the deposition rate of air pollutants by thermophoresis and/orStefan flow is increased by 3 or 4 times in comparison with a horizontal surface. In the presence ofturbulence, the thickness of the thermal and concentration layers was dramatically reduced, makingthese two kinds of deposition much faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnaser, W. E. and Barakat, A.: 2000, 'Use of Condensed Water Vapour from the Atmosphere for Irrigation in Barhein', Appl. Energ. 65, 3-18.

    Google Scholar 

  • Arnold, A. and Zhender, K.: 1990, 'Salt Weathering on Monuments', in F. Zezza (ed.), The Conservation of Monuments in the Mediterranean Basin, Grafo, Bari, 31-58.

  • Awanou, C. N. and Hazoume, R. P.: 1997, 'Study of Natural Condensation of Atmospheric Humidity', Renew2. Energ. 10, 19-34.

    Google Scholar 

  • Baer, N. S., Fitz, S., and Livingston, R. A. (eds.): 1998, Conservation of Historic Brick Structures, Donhead, Dorset, 505 pp.

    Google Scholar 

  • Brimblecombe, P.: 1996, Air Composition and Chemistry, Cambridge University Press, Cambridge, 253 pp.

    Google Scholar 

  • Camuffo, D.: 1993, 'Reconstructing the Climate and the Air Pollution of Rome during the Life of the Trajan Column', Sci. Total Environ. 128, 205-226.

    Google Scholar 

  • Camuffo, D.: 1998, Microclimate for Cultural Heritage, Developments in Atmospheric Science 23, Elsevier, Amsterdam, 415 pp.

    Google Scholar 

  • Caneva, G., Gori, E., and Montefinale, T.: 1995, 'Biodeterioration of Monuments in Relation to Climatic Changes in Rome between 19-20th Centuries', Sci. Total Environ. 167, 205-214.

    Google Scholar 

  • Del Monte, M.: 1991, 'Trajan Column: Lichens Don't Live Here Any More', Endevour 15, 86-89.

    Google Scholar 

  • Del Monte, M. and Sabbioni, C.: 1986, 'Chemical and Biological Weathering of an Historical Building: The Reggio Emilia Cathedral', Sci. Total Environ. 50, 147-163.

    Google Scholar 

  • Duvdevani, S.: 1947, 'An Optical Method of Dew Estimation', Quart. J. Roy. Meteorol. Soc. 73, 28-296.

    Google Scholar 

  • Garratt, J. R. and Segal, M.: 1988, 'On the Contribution of AtmosphericMoisture to Dew Formation', Boundary-Layer Meteorol. 45, 209-236.

    Google Scholar 

  • Green, W. and Maloney, G. O.: 1984, Perryts Chemical, Engineers Handbook, Vol. 3, McGraw & Hill, Singapore, pp. 1-291.

    Google Scholar 

  • HMSO, 1991: Meteorological Glossary, Meteorological Office, HMSO, London, 335 pp.

    Google Scholar 

  • Horino, O.: 1992, 'Climatic Factors Affecting Rice Blast Outbreak and its Control in Nile Delta, Egypt', Japan Pesticide Information 60, 32-37.

    Google Scholar 

  • Hughes, R. N. and Brimblecombe, P.: 1993, 'Dew and Guttation: Formation and Environmental Significance', Agric. For. Meteorol. 67, 173-190.

    Google Scholar 

  • Janssen, L. H. J. M., and Römer, F. G.: 1991, 'The Frequency and Duration of Dew over a Year, Tellus 43B, 408-419.

    Google Scholar 

  • Jones, M. S. and Wakefield, R. D.: 1999, Aspects of Stone Weathering, Decay and Conservation, Imperial College Press, London, 196 pp.

    Google Scholar 

  • Kidron, G. J.: 2000, 'Analysis of Dew Precipitation in Three Habitats within a Small Arid Drainage Basin, Negev Highlands, Israel', Atmos. Res. 55, 257-270.

    Google Scholar 

  • Kondratyev, Y.: 1969, Radiation in the Atmosphere, Academic Press, New York, 912 pp.

    Google Scholar 

  • Lefèvre, R. A. and Pallot-Frossard, I. (eds.): 1998, Le materiau vitreux: verre et vitraux, European University Centre for Cultural Heritage, Ravello, Edipuglia Bari, 151 pp.

    Google Scholar 

  • Leick, E.: 1932, 'Zur Methodik der relativen Taumessung', Beih. Botanisches Zentralblad 49, 160-189.

    Google Scholar 

  • List, R. J.: 1971, Smithsonian Meteorological Tables, Smithsonian Institution, Washington D.C., 527 pp.

    Google Scholar 

  • Luo, W. and Goudriaan, J.: 1999, 'Effects of Altering Water Temperature on Leaf Wetness in Paddy Rice Crops', Agric. For. Meteorol. 97, 33-42.

    Google Scholar 

  • Luo, W. and Goudriaan, J.: 2000, 'Dew Formation on Rice under Varying Duration of Nocturnal Radiative Loss', Agric. For. Meteorol. 104, 303-313.

    Google Scholar 

  • Marek, R. and Straub, J.: 2001, 'Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water', Int. J. Heat Mass Transfer 44, 39-53.

    Google Scholar 

  • Nilsson, T.: 1996, 'Initial Experiment on Dew Collection in Sweden and Tanzania', Sol. Energ. Mat. Sol. Cells 40, 23-32.

    Google Scholar 

  • Papida, S., Murphy,W., and May, E.: 2000, 'Enhancement of PhysicalWeathering of Building Stones by Microbial Populations', Int. Biodeter. Biodegr. 46, 305-317.

    Google Scholar 

  • Phenix, A. and Burnstaock, A.: 1990, 'The Deposition of Dirt: A Review of Literature', in S. Hckney et al. (eds.), Dirt and Pictures Separated, U.K. Institute for Conservation, Belton, 11-18.

    Google Scholar 

  • Prodi, F. and Tampieri, F.: 1982, 'The Removal of Particulate Matter from the Atmosphere: The Physical Mechanisms', Pageoph 120, 286-325.

    Google Scholar 

  • Pruppacher, H. R. and Klett, J. D.: 2000: Microphysics of Clouds and Precipitation, Reidel, Dordrecht, 954 pp.

    Google Scholar 

  • Saiz-Jimenez, C.: 1999, 'Biogeochemistry of Weathering Processes in Monuments', Geomicrobiol. J. 16, 27-37.

    Google Scholar 

  • Saiz Jimenez, C., Brimblecombe, P., Camuffo, D., Lefèvre, R. and Van Grieken, R.: 1997, Damage to Monuments by Pollution, European Parliament, Scientific Options Assessment, Project No. EP/IV/B/STOA/95/MONUMENTS/02.

  • Sanders, D. and Hench, L. L.: 1973, 'Mechanisms of Glass Corrosion', J. Amer. Ceram. Soc. 56, 373.

    Google Scholar 

  • Scherer, G. W.: 1999, 'Crystallisation in Pores', Cement Concrete Res. 29, 1347-1358.

    Google Scholar 

  • Severini, M., Moriconi, M. L., and Tonna, G.: 1984, 'Dewfall and Evapotranspiration Determination during Day-and Nighttime on an Irrigated Lawn', J. Clim. Appl. Meteorol. 23, 1241-1246.

    Google Scholar 

  • Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R.: 1980, 'Thermophoresis of Particles in a Heated Boundary Layer', J. Fluid Mech. 1014, 737-758.

    Google Scholar 

  • Uehara, Y., Imoto, M., and Sakai, Y.: 1988, 'Study on the Forecasting of the Rice Blast Development Using the Weather Data from AMeDAS', Bull. Hiroshima Prefectural Agric. Exp. Stn. 51, 1-15.

    Google Scholar 

  • Verità M.: 1996, 'Composition, Structure et mécanisme de détérioration des grisailles', in Proceedings of the Forum for the Conservation and Restoration of Stained Glasses, Liège, in Dossier de la Commission Royale des Monuments, Sites et Fouilles 3, pp. 61-67.

    Google Scholar 

  • Wallin, J. R.: 1963, 'Dew, its Significance and Measurement in Phytopathology', Phytopathology 53, 1210-1216.

    Google Scholar 

  • Warscheid, Th. and Braams, J.: 2000, 'Biodeterioration of Stone: A Review', Int. Biodeter. Biodegr. 46, 343-368.

    Google Scholar 

  • Winkler, E. M.: 1994, Stone in Architecture, Springer Verlag, Berlin, 313 pp.

    Google Scholar 

  • WMO: 1966, International Meteorological Vocabulary, WMO No. 182 TP 91,World Meteorological Organisation, Geneva, 276 pp.

    Google Scholar 

  • Xu, N., Zhao, L., Ding, C., Zhang, C., Li, R., and Zhong, Q.: 2002, 'Laboratory Observation of Dew Formation at an Early Stage of Atmospheric Corrosion of Metals', Corros. Sci. 44, 163-170.

    Google Scholar 

  • Zangvil, A.: 1966, 'Six Years of Dew Observation in the Negev Desert, Israel', J. Arid Environ. 32, 361-372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camuffo, D., Giorio, R. Quantitative Evaluation of Water Deposited By Dew on Monuments. Boundary-Layer Meteorology 107, 655–672 (2003). https://doi.org/10.1023/A:1022893012277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022893012277

Navigation