Skip to main content
Log in

Effects of Clay Minerals on Cr(Vi) Reduction by Organic Compounds

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study is to examine the effect of clayminerals (illite, montmorillonite, and kaolinite) on chromate (Cr(VI)) reduction by several low molecular weightorganic compounds. Batch experiments at pH ranging from 3.0 to6.0 and 25 °C showed that 2:1 layered clays illite andsmectite catalyzed Cr(VI) reduction by oxalate. The catalyticeffect increased as pH was decreased. The 1:1 clay kaolinite hadno catalytic effect under comparable conditions. Direct Cr(VI)reduction by reactive moieties associated with illite andmontmorillonite was observed, but at a much slower rate than thecatalytic pathway. Cr(VI) reduction by glyoxylic acid, glycolicacid, lactic acid, and mandelic acid was accelerated by illite,although aqueous phase reduction might occur in parallel. Theseresults suggest that Cr(VI) reduction rates in subsurfaceenvironments rich in organic compounds may be elevated throughcatalysis of surface-bound metals and/or soluble species from theclay minerals, and as a result, higher than those expected fromaqueous phase reaction alone. Such rate enhancement for Cr(VI)reduction needs to be accounted for when developing new remedialtechniques for chromium site remediation or assessing its naturalattenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amonette, J. E., Szecsody, J. E., Schaef, H. T., Templeton, J. C., Gorby, Y. A. and Fruchter, J. S.: 1994, 'Abiotic Reduction of Aquifer Materials by Dithionite: a Promising In-Situ Remediation Rechnology', in G. W. Gee and R. W. Wing (eds), In-situ Remediation: Scientific Basis for Current and Future Technologies, Proceedings of the 33rd Hanford Symposium on Health and the Environment, Battelle Press, Columbus, Ohio, pp. 851-881.

    Google Scholar 

  • APHA, AWWA, and WPCF: 1992, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.

    Google Scholar 

  • Barcelona, M. J. and Holm, T. R.: 1991, 'Oxidation-reduction capacities of aquifer solids', Environ. Sci. Technol. 25, 1565-1572.

    Google Scholar 

  • Baldea, I.: 1989, 'The reaction between chromate and thiols. IV. The effect of iron(II)-Fe(III) and copper(I)-Cu(II) systems on the oxidation of thioglycolic acid', Stud. Univ. Babes-Bolyai, Chem. 34(1), 80-88.

    Google Scholar 

  • Beattie, J. K. and Haight, G. P.: 1972, 'Chromium(VI) oxidation of inorganic substrates', Progr. Inorganic Chem. 17, 93-145.

    Google Scholar 

  • Blowes, D. W., Ptacek, C. J. and Jambor, J. L.: 1997, 'In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies', Environ. Sci. Technol. 31, 3348-3357.

    Google Scholar 

  • Brigatti, M. F., Franchini, G., Lugli, C., Medici, L., Poppi, L. and Turci, E.: 2000, 'Interaction between aqueous chromium solutions and layer silicates', Appl. Geochem. 15, 1307-1316.

    Google Scholar 

  • Buerge, I. J. and Hug, S. J.: 1999, 'Influence of mineral surface on chromium(VI) reduction by iron(II)', Environ. Sci. Technol. 33, 4285-4291.

    Google Scholar 

  • Cainelli, G. and Cardillo, G.: 1984, Chromium Oxidations in Organic Chemistry, Springer-Verlag, New York.

    Google Scholar 

  • Connett, P. H. and Wetterhahn, K. E.: 1985, 'In vitro reaction of the carcinogen chromate with cellular thiols and carboxylic acids', J. Amer. Chem. Soc. 107, 4282-4288.

    Google Scholar 

  • Deng, B.: 1995, 'Chromium(VI) Reduction by Naturally-Occurring Organic Compounds: Direct and Surface-Catalyzed Reactions', Ph.D. Dissertation, Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD, U.S.A., 188 pp.

    Google Scholar 

  • Deng, B. and Stone, A. T.: 1996a, 'Surface-catalyzed chromium(VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces', Environ. Sci. Technol. 30, 2486-94.

    Google Scholar 

  • Deng, B. and Stone, A. T.: 1996b, 'Surface-catalyzed chromium(VI) reduction: the TiO2-mandelic acid system', Environ. Sci. Technol. 30, 463-472.

    Google Scholar 

  • Dixon, D. A., Sadler, N. P. and Dasgupta, T. P.: 1993, 'Oxidation of biological substrates by chromium( VI). Part 1. Mechanism of the oxidation of L-ascorbic acid in aqueous solution', J. Chem. Soc. Dalton Trans., 3489-3495.

  • Eary, L. E. and Rai, D.: 1988, 'Chromate removal from aqueous wastes by reduction with ferrous ion', Environ. Sci. Technol. 22, 972-977.

    Google Scholar 

  • Eary, L. E. and Rai, D.: 1989, 'Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25 °C', Amer. J. Sci. 289, 180-213.

    Google Scholar 

  • Elovitz, M. S. and Fish, W.: 1994, 'Redox interactions of Cr(VI) and substituted phenols: kinetic investigation', Environ. Sci. Technol. 28, 2161-2169.

    Google Scholar 

  • Espenson, J. H.: 1970, 'Rate studies on the primary step of the reduction of chromium(VI) by iron(II)', J. Amer. Chem. Soc. 92, 1180.

    Google Scholar 

  • Fendorf, S. E. and Li, G.: 1995, 'Kinetics of chromate reduction by ferrous iron', Environ. Sci. Technol. 30, 1614-1617.

    Google Scholar 

  • Fruchter, J. S., Amonette, J. E., Cole, C. R., Gorby, Y. A., Humphrey, Y. A., Isok, J. D., Spane, F. A., Szecsody, J. E., Teel, S. S., Vermeul, V. R., Williams, M. D. and Yabusaki, S. B.: 1996, In Situ Redox Manipulation Field Injection Test Report-Hanford 100-H Area, Pacific Northwest National Laboratory, Richland, Washington.

    Google Scholar 

  • Goodgame, D. M. L. and Hayman, P. B.: 1984, 'Formation of water-soluble chromium(V) by the interaction of humic acid and the carcinogen chromium(VI)', Inorganica Chimica Acta 91, 113-115.

    Google Scholar 

  • Harzdorf, A. C.: 1987, 'Analytical chemistry of chromium species in the environment, and interpretation of results', Intern. J. Envrion. Anal. Chem. 29, 249-261.

    Google Scholar 

  • Henderson, T.: 1994, 'Geochemical reduction of hexavalent chromium in the Trinity sand aquifer', Ground Water 32, 477-487.

    Google Scholar 

  • Huber, C. and Haight, G.: 1976, 'The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion', J. Amer. Chem. Soc. 98, 4128-4131.

    Google Scholar 

  • James, B. and Bartlett, R. J.: 1983, 'Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms', J. Environ. Qual. 12, 177-181.

    Google Scholar 

  • Kim, C., Zhou, Q., Deng, B., Thornton, E. and Xu, H.: 2001, 'Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics', Environ. Sci. Technol. 35, 2219-2225.

    Google Scholar 

  • Krumpolc, M. and Rocek, J.: 1985, 'Chromium(V) oxidation of organic compounds', Inorg. Chem. 24, 617-621.

    Google Scholar 

  • Manning, B. A. and Goldberg, S.: 1996, 'Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite', Clays Clay Minerals 44, 609.

    Google Scholar 

  • National Research Council: 1994, Alternatives for Ground Water Cleanup, National Academy Press, Washington, D.C.

    Google Scholar 

  • Palmer, C. D. and Puls, R. W.: 1994, 'Natural Attenuation of Hexavalent Chromium in Ground Water and Soils', Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.

    Google Scholar 

  • Palmer, C. D. and Wittbrodt, P. R.: 1991, 'Processes affecting the remediation of chromiumcontaminated sites', Env. Health Perspect. 92, 25-40.

    Google Scholar 

  • Pearson, R. G.: 1966, 'Acids and bases', Science 151, 172-177.

    Google Scholar 

  • Pettine, M., Millero, F. J. and Passino, R.: 1994, 'Reduction of chromium(VI) with hydrogen sulfide in NaCl media', Mar. Chem. 46, 335-344.

    Google Scholar 

  • Pilkington, E. S. and Smith, P. R.: 1967, 'The spectrophotometric determination of chromium in ilmenite', Anal. Chim. Acta 39, 321-328.

    Google Scholar 

  • Puls, R. W., Clark, D. A., Paul, C. J. and Vardy, J.: 1994, 'Transport and transformation of hexavalent chromium through soils and into ground water', J. Soil Contam. 3, 203-224.

    Google Scholar 

  • Rai, D., Zachara, J. M., Eary, L. E., Girvin, D. C., Moore, D. A., Resch, C. T., Sass, B. M. and Schmidt, R. L.: 1986, 'Geochemical Behavior of Chromium Species', EPRI-4544. Battelle Pacific Northwest Laboratories, Washington.

    Google Scholar 

  • Ray, D., Sass, B. M. and Moore, D. A.: 1987, 'Chromium hydrolysis constants and stability of chromium(III) hydroxide', Inorg. Chem. 26, 345-349.

    Google Scholar 

  • Riley, R. G. and Zachara, J. M.: 1992, 'Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research', U.S. Department of Energy, Washington, DC.

    Google Scholar 

  • Sansone, F. J.: 1986, 'Depth distribution of short-chain organic acid turnover in Cape Lookout Bight sediment', Geochim. Cosmochim. Acta 50, 99-105.

    Google Scholar 

  • Seaman, J. C., Bertsch, P. M. and Schwallie, L.: 1999, 'In situ Cr(VI) reduction within coarsetextured, oxide-coated soil and aquifer systems using Fe(II) solution', Environ. Sci. Technol. 33, 938-944.

    Google Scholar 

  • Sedlak, D. L. and Chan, P.: 1997, 'Reduction of hexavalent chromium by ferrous iron', Geochim. Cosmochim. Acta 61, 2185-2192.

    Google Scholar 

  • Stevenson, F. J.: 1985, 'Geochemistry of Soil Humic Substances', in G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy (eds), Humic Substances in Soil, Sediment, and Water, Wiley-Interscience, New York, pp. 13-52.

    Google Scholar 

  • Stone, A. T. and Deng, B.: 1995, 'Catalytic Redox Reactions of Inorganic Species in Aquatic Environments', 209th ACS National Meeting: Preprints of Papers, Environmental Chemistry Division, Anaheim, CA, pp. 453-456.

  • Stone, A. T., Godtfredsen, K. L. and Deng, B.: 1994, 'Sources and Reactivity of Reductants Encountered in Aquatic Environments', in Bidoglio and W. Stumm (eds), Chemistry of Aquatic Systems: Local and Global Perspectives, ECSC, EEC, EAEC, Brussels and Luxembourg, pp. 337-374.

    Google Scholar 

  • Stumm, W., Furrer, G., Wieland, E. and Zindler, B.: 1985, 'The Effect of Complex-Forming Ligands on the Dissolution of Oxides and Aluminosilicates', Proceedings of the NATO Advanced Research Workshop on the Chemistry of weathering, Rodez, France, 1984.

  • Thornton, E. C. and Amonette, J. E.: 1999, 'Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposal site: implications for in situ remediation', Environ. Sci. Technol. 33, 4096-4101.

    Google Scholar 

  • Thurman, E. M.: 1985, Organic Geochemistry of Natural Waters, Nijhoff/Junk Publishers, Boston.

    Google Scholar 

  • U.S. Environmental Protection Agency: 1984, Health Assessment Document for Chromium Final Report, EPA Environment Criteria Assessment Office, Research Triangle Park, NC p. 27711.

    Google Scholar 

  • Van Olphen, H. and Fripiat, J. J.: 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals. Pergamon Press.

  • Wittbrodt, P. R. and Palmer, C. D.: 1995, 'Reduction of Cr(VI) in the presence of excess of soil fulvic acid' Environ. Sci. Technol. 29, 255-263.

    Google Scholar 

  • Zachara, J. M., Cowan, C. C., Schmidt, R. L. and Ainsworth, C. C.: 1988, 'Chromate adsorption on kaolinite', Clays Clay Minerals 36, 317-326.

    Google Scholar 

  • Zachara, J. M., Ainsworth, C. C., Cowan, C. E. and Resch, C. T.: 1989, 'Adsorption of chromate by subsurface soil horizons', Soil Sci. Soc. Am. J. 53, 418-428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, B., Lan, L., Houston, K. et al. Effects of Clay Minerals on Cr(Vi) Reduction by Organic Compounds. Environ Monit Assess 84, 5–18 (2003). https://doi.org/10.1023/A:1022890909779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022890909779

Navigation