Skip to main content
Log in

A Comparative Study on Selectivity of α-Conotoxins GI and ImI Using Their Synthetic Analogues and Derivatives

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Comparative structure-function studies have been carried out for α-conotoxin GI acting on nicotinic acetylcholine receptors (AChR) from mammalian muscles and from the electric organ of the Torpedo californica ray and for α-conotoxin ImI, which targets the neuronal a7 AChR. A series of analogs has been prepared for this purpose: chemically modified derivatives, including a covalently linked dimer of GI, as well as analogs wherein one or several amino acid residues have been changed using solid-phase peptide synthesis. The activity of all compounds was assessed in competition with radioiodinated and/or tritiated α-conotoxin GI for binding to the membrane-bound AChR of Torpedo californica. Binding of radioiodinated α-conotoxin GI dimer was also monitored directly, revealing the largest, as compared to all other analogues, difference in the affinity between the two binding sites in the receptor (KD ∼ 11 and 1200 nM). Comparison of binding data with the results of CD measurements point to important role of the spatial organization of the α-conotoxin second loop in manifestation of their “muscle” or “neuronal” specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McIntosh, J. M., Santos, A. D., and Olivera, B. M. 1999. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 68:59–88.

    PubMed  Google Scholar 

  2. Arias, H. R. and Blanton, M. P. 2000. Alpha-conotoxins. Int. J. Biochem. Cell Biol. 32:1017–1028.

    PubMed  Google Scholar 

  3. Utkin, Yu. N., Kobayashi, Y., Hucho, F., and Tsetlin, V. I. 1994. Relationship between the binding sites for an α-conotoxin and snake venom neurotoxins in the nicotinic acetylcholine receptor from Torpedo californica. Toxicon. 32:1153–1157.

    PubMed  Google Scholar 

  4. Hann, R. M., Pagan, O. R., and Eterovic, V. A. 1994. The α-conotoxins GI and MI distinguish between the nicotinic acetylcholine receptor agonist sites while SI does not. Biochemistry. 33:14058–14063.

    PubMed  Google Scholar 

  5. Groebe, D. R., Gray, W. R., and Abramson, S. N. 1997. Determinants involved in the affinity of α-conotoxins GI and SI for the muscle subtype of nicotinic acetylcholine receptors. Biochemistry. 36:6469–6474.

    PubMed  Google Scholar 

  6. Kuryatov, A., Olale, F., Cooper, J., Choi, C., and Lindstrom, J. 2000. Human α6 AChR subtypes: Subunit composition, assembly, and pharmacological responses. Neuropharmacology. 39:2570–2590.

    PubMed  Google Scholar 

  7. Cartier, G. E., Yoshikami, D., Gray, W. R., Luo, S., Olivera, B. M., and McIntosh, J. M. 1996. A new α-conotoxin which targets α3β2 nicotinic acetylcholine receptors. J. Biol. Chem. 271:7522–7528.

    PubMed  Google Scholar 

  8. Johnson, D., Martinez, J., Egloyhen, A., Henemann, S., and McIntosh, J. 1995. α-Conotoxin ImI exhibits subtype-specific nicotinic acetylcholine receptor blockade: Preferential inhibition of homomeric α7 and β9 receptors. Mol. Pharmacol. 48:194–199.

    PubMed  Google Scholar 

  9. Loughnan, M., Bond, T., Atkins, A., Cuevas, J., Adams, D. J., Broxton, N. M., Livett, B., Down, J., Jones, A., Alewood, P., and Lewis, R. 1998. α-Conotoxin EpI, a novel sulfated peptide from Conus episcopatus that selectively targets neuronal nicotinic acetylcholine receptors. J. Biol. Chem. 273:15667–15674.

    PubMed  Google Scholar 

  10. Luo, S., Kulak, J., Cartier, G., Jacobsen, R., Yoshikami, D., Olivera, B., and McIntosh, J. 1998. α-Conotoxin AuIB selectively blocks α3β4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J. Neurosci. 18:8571–8579.

    PubMed  Google Scholar 

  11. Guddat, L. W., Martin, J. A., Shan, L., Edmundson, A. B., and Gray, W. R. 1996. Three-dimensional structure of the α-conotoxin GI at 1.2 Å resolution. Biochemistry. 35:11329–11335.

    PubMed  Google Scholar 

  12. Maslennikov, I. V., Sobol, A. G., Gladky, K., Lugovskoy, A. A., Ostrovsky, A., Tsetlin, V. I., Ivanov, V. T., and Arseniev, A. S. 1998. Two distinct structures of α-conotoxin GI in aqueous solution. Eur. J. Biochem. 254:238–247.

    PubMed  Google Scholar 

  13. Maslennikov, I. V., Shenkarev, Z. O., Zhmak, M. N., Ivanov, V. T., Methfessel, C., Tsetlin, V. I., and Arseniev, A. S. 1999. NMR spatial structure of α-conotoxin ImI reveals a common scaffold in snail and snake toxins recognizing neuronal nicotinic acetylcholine receptors. FEBS Lett. 444:275–280.

    PubMed  Google Scholar 

  14. Almquist, R. G., Kadambi, S. R., Yasuda, D., Weitl, F., Polgar, W., and Toll, L. R. 1989. Paralytic activity of (des–Glu1)conotoxin GI analogs in the mouse diaphragm. Int. J. Peptide Protein Res. 34:455–462.

    Google Scholar 

  15. Bren, N. and Sine, S. M. 2000. Hydrophobic pairwise interactions stabilize α-conotoxin MI in the muscle acetylcholine receptor binding site. J. Biol. Chem. 275:12692–12700.

    PubMed  Google Scholar 

  16. Zhmak, M., Kasheverov, I., Utkin, Yu., Tsetlin, V., Vol'pina, O., and Ivanov, V. 2001. Efficient synthesis of natural α-conotoxins and their analogs. [in Russian] Bioorgan. Khim. 27:83–88.

    Google Scholar 

  17. Kasheverov, I., Rozhkova, A., Zhmak, M., Utkin, Yu., and Tsetlin, V. 2002. Photoactivatable derivatives of α-conotoxins GI and MI and their interaction with nicotinic acetylcholine receptor. [in Russian] Bioorgan. Khim. 28:99–106.

    Google Scholar 

  18. Kasheverov, I., Rozhkova, A., Zhmak, M., Utkin, Yu., Ivanov, V., and Tsetlin, V. 2001. Photoactivatable α-conotoxins reveal contacts with all subunits as well as antagonist-induced rearrangements in the Torpedo californica acetylcholine receptor. Eur. J. Biochem. 268:3664–3673.

    PubMed  Google Scholar 

  19. Alexeev, T., Krivoshein, A., Shevalier, A., Kudelina, I., Telyakova, O., Vincent, A., Utkin, Y., Hucho, F., and Tsetlin, V. 1999. Physico-chemical and immunological studies of the N-terminal domain of the Torpedo acetylcholine receptor α-subunit expressed in E. coli. Eur. J. Biochem. 259:310–319.

    PubMed  Google Scholar 

  20. Zolotarev, Yu., Bocharov, E., Dadayan, A., Kasheverov, I., Zhmak, M., Maslennikov, I., Borisov, Yu., Arseniev, A., Myasoedov, N., and Tsetlin, V. 2000. The solid-state catalytic isotope exchange of hydrogen in α-conotoxin GI by the tritium spillover. [in Russian] Bioorgan. Khim. 26:587–592.

    Google Scholar 

  21. Schiebler, W., Lauffer, L., and Hucho, F. 1977. Acetylcholine receptor enriched membranes: Acetylcholine binding and excitability after reduction in vitro. FEBS Lett. 81:39–42.

    PubMed  Google Scholar 

  22. Schippers, P. and Dekkers, H. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instruments. Anal. Chem. 53:778–788.

    Google Scholar 

  23. Koradi, R., Billeter, M., and Wuthrich, K. 1996. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14:51–55.

    Google Scholar 

  24. Hann, R., Pagan, O., Gregory, L., Jacome, T., and Eterovic, V. 1997. The 9-arginine residue of α-conotoxin GI is responsible for its selective high affinity for the α/γ agonist site on the electric organ acetylcholine receptor. Biochemistry. 36:9051–9056.

    PubMed  Google Scholar 

  25. Papineni, R. V. L., Sanchez, J. U., Baksi, K., Willcockson, I. U., and Pedersen, S. E. 2001. Site-specific interactions of α-conotoxin MI with the nicotinic acetylcholine receptor. J. Biol. Chem. 276:23589–23598.

    PubMed  Google Scholar 

  26. Jacobsen, R., DelaCruz, R., Grose, J., McIntosh, J., Yoshikami, D., and Olivera, B. 1999. Critical residues influence the affinity and selectivity of α-conotoxin MI for nicotinic acetylcholine receptors. Biochemistry. 38:13310–13315.

    PubMed  Google Scholar 

  27. Gouda, H., Yamazaki, K., Hasegawa, J., Kobayashi, Y., Nishiuchi, Y., Sakakibara, S., and Hirono, S. 1997. Solution structure of α-conotoxin MI determined by 1H-NMR spectroscopy and molecular dynamics simulation with the explicit solvent water. Biochim. Biophys. Acta. 1343:327–334.

    PubMed  Google Scholar 

  28. Quiram, P. A. and Sine, S. M. 1998. Structural elements in α-conotoxin ImI essential for binding to neuronal α7 receptors. J. Biol. Chem. 273:11007–11011.

    PubMed  Google Scholar 

  29. Servent, D., Thanh, H. L., Antil, S., Bertrand, D., Corringer, P.-J., Changeux, J.-P., and Menez, A. 1998. Functional determinants by which snake and cone snail toxins block the α7 neuronal nicotinic acetylcholine receptors. J. Physiol. (Paris). 92:107–111.

    Google Scholar 

  30. Rogers, J. P., Luginbühl, P., Pemberton, K., Harty, P., Wemmer, D. E., and Stevens, R. C. 2000. Structure-activity relationships in a peptidic α7 nicotinic acetylcholine receptor antagonist. J. Mol. Biol. 304:911–926.

    PubMed  Google Scholar 

  31. Utkin, Yu.N., Zhmak, M. N., Methfessel, C., and Tsetlin, V. I. 1999. Aromatic substitutions in α-conotoxin ImI: Synthesis of iodinated photoactivatable derivative. Toxicon. 37: 1683–1695.

    PubMed  Google Scholar 

  32. Utkin, Y., Kukhtina, V., Kryukova, E., Chiodini, F., Bertrand, D., Methfessel, C., and Tsetlin, V. 2001. "Weak toxin" from Naja kaouthia is a nontoxic antagonist of α7 and muscle-type nicotinic acetylcholine receptors. J. Biol. Chem. 276:15810–15815.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasheverov, I.E., Zhmak, M.N., Maslennikov, I.V. et al. A Comparative Study on Selectivity of α-Conotoxins GI and ImI Using Their Synthetic Analogues and Derivatives. Neurochem Res 28, 599–606 (2003). https://doi.org/10.1023/A:1022889827195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022889827195

Navigation