Skip to main content
Log in

The low-temperature afterglow in N2–ε·CH4 gas mixtures

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The influence of the small methane impurities on the pure nitrogen afterglow was studied in DC flowing plasma reactor in wide range of methane concentrations (0.01–400 ppm) at different wall temperatures of the reactor observation part (77–300 K). The relative vibrational distributions of \({\text{N}}_{\text{2}} ({\text{C}}^{\text{3}} \Pi _u ){\text{ and N}}_{\text{2}}^{\text{ + }} ({\text{B}}^{\text{2}} \sum _{\text{u}}^{\text{ + }} )\) states have been calculated from the recorded spectra in pure nitrogen. We observed strong quenching of the nitrogen pink afterglow at methane concentrations of a few ppm, however the pink afterglow intensity was growing up at the methane concentrations under 1 ppm. Simultaneously, the maximum pink afterglow intensity was observable at later decay times with the increase of the methane concentration. At low wall temperatures, especially at later decay times, we observed extremely high sensitivity of the pure nitrogen to the methane pretence in the discharge. Thus we are able to detect the methane concentrations in order of 0.01 ppm. We also observed the higher transitions of the CN violet system which are usually observed in the spectra of space emission sources. The method detecting hydrocarbon and fluorocarbon impurities in pure nitrogen is based on the results of the above mentioned experiments. We present first results of some experiments studying the polyhydrocarbon destruction rates measured by this new sensitive method. Finally, we designed also the simple kinetic model describing the processes during the afterglow in the N2–ε·CH4 mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Setser and B. A. Thrush: Proc. Roy. Soc. A 288 (1965) 256.

    Google Scholar 

  2. E. B. Gordon, A. A. Pelmenev, O. F. Pugachev, and V. Khmelenko: Chem. Phys. 61 (1981) 35.

    Google Scholar 

  3. J. Janča, A. Talsky, F. Krčma, L. Hočhard, and A. Ricard: Acta Phys. Univ. Come-nianae 35 (1995) 197.

    Google Scholar 

  4. F. Krcma: Thesis, Masaryk University, Brno, 1995.

    Google Scholar 

  5. V. Kumar and A. Kumar: Physica C 132 (1981) L 273.

    Google Scholar 

  6. J. Janča, A. Taisky, and F. Krčma: Czech. J. Phys. 43 (1993) 1213.

    Google Scholar 

  7. J. Janča J., A. Talsky, F. Krčma, L. Hochard L., and A. Ricard: Plasma Chem. Plasma Process. 14 (1994) 197.

    Google Scholar 

  8. L. S. Polak, D. I. Sloveckii, and A. S. Sokolov: Opt. Spectrosc. 32 (1972) 247;Opt. Spektrosk. 32 (1972) 472-in Russian.

    Google Scholar 

  9. L. S. Polak, P. A. Sergeev, and D. I. Slovetskii: High Temp. 15 (1977) 13;Teplofiz. Vys. Temp. 15 (1977) 15-in Russian.

    Google Scholar 

  10. F. Paniccia, C. Gorse, M. Cacciatore, and M. Capitelli: J. Appl. Phys. 61 (1987) 3123.

    Google Scholar 

  11. F. Krcma: in Proc. SPPT XVIII, Prague 1997 (Ed. V. Myslik), Czech Techn. Uni-versity and Inst. of Plasma Phys., Acad. Sci. CR, 1997, p. 197.

  12. L. G. Bolshakova, Yu. B. Golubovskii, V. M. Telezhko, and D. G. Stoyanov: Sov. Phys. Tech. Phys. 35 (1990) 665.

    Google Scholar 

  13. F. R. Gilmore, R. R. Laher, and P. J. Espy: J. Phys. Chem. Ref. Data 21 (1992) 1005.

    Google Scholar 

  14. G. Cerogora: Thesis, University Paris-Sud, Paris 1980.

    Google Scholar 

  15. V. A. Pivovar and T. D. Sidorova: Sov. Phys. Tech. Phys. 30 (1985) 308.

    Google Scholar 

  16. A. Y. M. Ung: J. Chem. Phys. 72 (1980) 3731.

    Google Scholar 

  17. H. H. Bromer and F. Dobler: Z. Phys. 185 (1965) 278.

    Google Scholar 

  18. W. M. Jackson and J. L. Faris: J. Chem. Phys. 56 (1972) 95.

    Google Scholar 

  19. A. Lofthus and P. H. Krupenie: J. Phys. Chem. Ref. Data 6 (1977) 113.

    Google Scholar 

  20. C. V. V. Prasad, P. F. Bernath, C. Frum, and R. Engelman: J. Mol. Spectrosc. 151 (1992) 459.

    Google Scholar 

  21. C. V. V. Prasad and P. F. Bernath: J. Mol. Spectrosc. 156 (1992) 327.

    Google Scholar 

  22. A. Ricard: Surf. Coat. Technol. 59 (1993) 67.

    Google Scholar 

  23. G. Herzberg: Molecular Spectra and Molecular Structure, Vol. I: Spectra of Diatomic Molecules (2nd ed. ), D. Van Nostrand Co., New York, 1950.

    Google Scholar 

  24. I. Kovacs: Rotational Structure in the Spectra of Diatomics Molecules, Akademiai Kiad6, Budapest, 1969.

    Google Scholar 

  25. J. Janča, A. Tálsky, F. Krčma, L. Hochard, and A. Ricard: in Proc. ICPIG XXI, Bochum 1993 (Eds. G. Ecker, U. Arendt, and J. Boseler), Ruhr-Universitat, Bochum, et al., 1993, p. 61.

    Google Scholar 

  26. R. W. B. Pearse and A. G. Gaydon: The Identification of Molecular Spectra, 4th ed., Chapman and Hall, London, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krčma, F., Babák, L. The low-temperature afterglow in N2–ε·CH4 gas mixtures. Czechoslovak Journal of Physics 49, 271–288 (1999). https://doi.org/10.1023/A:1022888714967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022888714967

Keywords

Navigation