Skip to main content
Log in

Using Arabidopsis to understand centromere function: Progress and prospects

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana has emerged in recent years as a leading model for understanding the structure and function of higher eukaryotic centromeres. Arabidopsis centromeres, like those of virtually all higher eukaryotes, encompass large DNA domains consisting of a complex combination of unique, dispersed middle repetitive and highly repetitive DNA. For this reason, they have required creative analysis using molecular, genetic, cytological and genomic techniques. This synergy of approaches, reinforced by rapid progress in understanding how proteins interact with the centromere DNA to form a complete functional unit, has made Arabidopsis one the best understood centromere systems. Yet major problems remain to be solved: gaining a complete structural definition of the centromere has been surprisingly difficult, and developing synthetic mini-chromosomes in plants has been even more challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brandes A, Thompson H, Dean C, Heslop‐Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chrom Res 5: 238‐246.

    Google Scholar 

  • Carbon J, Clarke L (1990) Centromere structure and function in budding and fission yeasts. New Biol 2: 10‐19.

    Google Scholar 

  • Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA‐specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9: 259‐272.

    Google Scholar 

  • Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome‐wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci USA 95: 247‐252.

    Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468‐2474.

    Google Scholar 

  • Copenahver GP, Keith KC, Preuss D (2000) Tetrad analysis in higher plants. A budding technology. Plant Phys 124: 7‐15.

    Google Scholar 

  • du Sart D, Cancilla MR, Earle E et al. (1997) A functional neo‐centromere formed through activation of a latent human centromere and consisting of non‐alpha‐satellite DNA. Nature Gen 16: 144‐153.

    Google Scholar 

  • Fransz PF, Alonso‐Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High‐resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J 9: 421‐430.

    Google Scholar 

  • Fransz P, Armstrong S, Alonso‐Blanco C, Fischer TC, Torres‐Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13: 867‐876.

    Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH et al. (2000) Integrated cytogenetic map of chromosome arm 4 S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100: 367‐376.

    Google Scholar 

  • Fransz P, de Jong H, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99: 14584‐14589.

    Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Fransz P, Torres‐Ruiz RA (2001) The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J 27: 285‐296.

    Google Scholar 

  • Henikoff S, Ahmad K, Malik H (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098‐1102.

    Google Scholar 

  • Heslop‐Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11: 31‐42.

    Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map‐based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9: 117‐121.

    Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber‐FISH in physical mapping of Arabidopsis thaliana. Genome 41: 566‐572.

    Google Scholar 

  • Koornneef M, van Elden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983). Linkage map of Arabidopsis thaliana. J Hered 74: 265‐272.

    Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNARes 7: 315‐321.

    Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric regions of Arabidopsis thaliana chromosome 4. DNARes 8: 285‐290.

    Google Scholar 

  • Laibach F (1907) Zur frage nach der individualitat der chromosomen im pflanzenreich. Beihefte Botanischen Centralblatt 22: 191‐210.

    Google Scholar 

  • Lin X, Kaul S, Rounsley S et al. (1999) Sequence and analysis of chromosome 2 of Arabidopsis thaliana. Nature 402: 761‐68.

    Google Scholar 

  • Maluszynska J, Heslop‐Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1: 159‐166.

    Google Scholar 

  • Manzanero S, Puertas MJ, Jimenez G, Vega JM (2000) Neocentric activity of rye 5RL chromosome in wheat. Chromosome Res 8: 543‐554

    Google Scholar 

  • Martinez‐Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204: 417‐423.

    Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69: 361‐370.

    Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168: 1356‐1358.

    Google Scholar 

  • Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97: 141‐151.

    Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264: 1458‐1460.

    Google Scholar 

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: Genetic map positions and repetitive DNA structure. Genome Res 7: 1045‐1053.

    Google Scholar 

  • Sears LMS, Lee‐Chen S (1970) Cytogenetic studies in Arabidopsis thaliana. Can J Genet Cytol 12: 217‐223.

    Google Scholar 

  • Simoens CR, Gielen J, Van Montagu M, Inze' D (1988) Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acid Res 16: 6753‐6766.

    Google Scholar 

  • Stupar RM, Lilly JW, Town CD et al. (2001) Complex mtDNA constitutes an approximate 6200 kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large‐unit repeats. Proc Natl Acad Sci USA. 98: 5099‐5103.

    Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y et al. (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408: 823‐826.

    Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053‐1066.

    Google Scholar 

  • ten Hoopen R, Manteuffel R, Doležel J, Malysheva L, Schubert I (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109: 482‐489.

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796‐815.

    Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: 1926‐1928.

    Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S et al. (1997) Immunolocalization of CENP‐A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7: 901‐904.

    Google Scholar 

  • Yu H‐G, Hiatt EN, Dawe RK (2000) The plant kinetochore. Trends in Plant Sci 5: 543‐547.

    Google Scholar 

  • Zhong CX, Marshall JB, Topp C et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825‐2836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copenhaver, G.P. Using Arabidopsis to understand centromere function: Progress and prospects. Chromosome Res 11, 255–262 (2003). https://doi.org/10.1023/A:1022887926807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022887926807

Navigation