Skip to main content
Log in

Selection and Characterization of the Choline Transport Mutation Suppressor from Torpedo Electric Lobe, CTL1

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The presumptive choline transporter, CTL1, was initially identified through functional complementation of a triple yeast mutant (ctr ise URA3Δ) with deficiencies in both choline transport and choline neosynthesis under selective conditions that cause perturbations in membrane synthesis and growth. After transformation of these yeasts with a heterologous yeast expression library made from Torpedo electric lobe cDNAs, several colonies showed increased growth but only one clone increased the accumulation of external choline. The corresponding full-length cDNA was isolated and encodes a protein with 10 transmembrane domains. Northern analysis of Torpedo mRNA indicates that CTL1 is expressed at high levels in the spinal cord and brain. In Xenopus oocytes, Torpedo CTL1 expression was associated with the appearance of sodium independent high-affinity choline uptake. We propose that CTL1 plays a role in providing choline for membrane synthesis in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nikawa, J., Hosaka, K., Tsukagoshi, Y., and Yamashita, S. 1990. Primary structure of the yeast choline transport gene and regulation of its expression. J. Biol. Chem. 265:15996–16003.

    PubMed  Google Scholar 

  2. Andresen, P. A., Kaasen, I., Styrvold, O. B., Boulnois, G., and Strom, A. R. 1988. Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli. J. Gen. Microbiol. 134:1737–1746.

    PubMed  Google Scholar 

  3. Sweet, D. H., Miller, D. S., and Pritchard, J. B. 2001. Ventricular choline transport: A role for organic cation transporter 2 expressed in choroid plexus. J. Biol. Chem. 276:41611–41619.

    PubMed  Google Scholar 

  4. Simon, J. R. and Kuhar, M. J. 1976. High affinity choline uptake: Ionic and energy requirements. J. Neurochem. 27:93–99.

    PubMed  Google Scholar 

  5. Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., and Katsura, I. 2000. Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 3:120–125.

    PubMed  Google Scholar 

  6. Misawa, H., Nakata, K., Matsuura, J., Nagao, M., Okuda, T., and Haga, T. 2001. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 105:87–98.

    PubMed  Google Scholar 

  7. Tuček, S. 1984. Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog. Biophys. Mol. Biol 44:1–46.

    PubMed  Google Scholar 

  8. Martin, K. 1968. Concentrative accumulation of choline by human erythrocytes. J. Gen. Physiol. 51:497–516.

    PubMed  Google Scholar 

  9. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P. 1974. Choline uptake in glial cell cultures. Brain Res. 81:361–363.

    PubMed  Google Scholar 

  10. O'Regan, S., Traiffort, E., Ruat, M., Cha, N., Compaore, D., and Meunier, F. M. 2000. An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc. Natl. Acad. Sci. USA 97:1835–1840.

    PubMed  Google Scholar 

  11. Campbell, I. 1988. Standard media for cultivation of yeasts. Pages 277–280, in Campbell, I. and Duffus, J. H. (ed.), Yeast: A Practical Approach, IRL Press, Oxford.

    Google Scholar 

  12. Minet, M., Dufour, M. E., and Lacroute, F. 1992. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 2:417–422.

    PubMed  Google Scholar 

  13. Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360.

    PubMed  Google Scholar 

  14. O'Regan, S., Birman, S., and Meunier, F. M. 1995. Regulation of hemicholinium-3 sensitive choline uptake in Xenopus laevis oocytes by the second C2 domain of synaptotagmin. Brain Res. Mol. Brain Res. 32:135–142.

    PubMed  Google Scholar 

  15. Choy, P. C., Whitehead, F. W., and Vance, D. E. 1978. A rapid method for the determination of CTP and phosphocholine in rat liver and baby hamster kidney 21 cells. Can. J. Biochem. 56:831–835.

    PubMed  Google Scholar 

  16. Huff, T., Muller, C. S., Otto, A. M., Netzker, R., and Hannappel, E. 2001. Beta-thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33:205–220.

    PubMed  Google Scholar 

  17. Serru, V., Le Naour, F., Billard, M., Azorsa, D. O., Lanza, F., Boucheix, C., and Rubinstein, E. 1999. Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem. J. 340:103–111.

    PubMed  Google Scholar 

  18. Ledesma, M. D., Simons, K., and Dotti, C. G. 1998. Neuronal polarity: Essential role of protein-lipid complexes in axonal sorting. Proc. Natl. Acad. Sci. USA 95:3966–3971.

    PubMed  Google Scholar 

  19. Wille, S., Szekeres, A., Majdic, O., Prager, E., Staffler, G., Stockl, J., Kunthalert, D., Prieschl, E. E., Baumruker, T., Burtscher, H., Zlabinger, G. J., Knapp, W., and Stockinger, H. 2001. Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells. J. Immunol. 167:5795–5804.

    PubMed  Google Scholar 

  20. Blusztajn, J. K. 1998. Choline: A vital amine. Science 281:794–795.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Regan, S., Meunier, FM. Selection and Characterization of the Choline Transport Mutation Suppressor from Torpedo Electric Lobe, CTL1. Neurochem Res 28, 551–555 (2003). https://doi.org/10.1023/A:1022877524469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022877524469

Navigation