Skip to main content
Log in

Optical properties of semiconducting iron disilicide thin films

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The iron silicides samples were prepared by annealing of iron films evaporated onto silicon wafers and capped with amorphous silicon thin overlayers. Semiconducting FeSi2 phase is formed by annealing at the temperatures from 550°C to 850°C. The optical properties of the FeSi2 layers have been deduced from reflectance and transmittance measurements carried out in the temperature range of (77–380) K. The spectral dependence of the absorption coefficient favours direct allowed transitions with forbidden energy gap of 0.87eV at the room temperature. The application of a simple three-parameter semiempirical formula to the temperature dependence of the direct energy gaps leads to the following best fit parameters: the band gap at zero temperature E g (0) = (0.895 ± 0.004)eV, the dimensionless coupling parameter S = 2.0 ± 0.3, and the average phonon energy <hw> = (46 ± 8)meV. By examining all the reported triplets of parameters for β-FeSi2 fabricated by different techniques and thermal processes, an obvious discrepancy can be found for the lattice coupling parameter and average phonon energy, although the bandgaps at 0 K are very similar. Unlike the theoretical prediction and the earlier reported result, our results do not show any evidence of a particularly strong electron-phonon interaction, which would give the lower carrier mobilities. β-FeSi2 seems to be an intriguing material where states with energies near the band edges permit ambiguous interpretation of the character of transitions. From optical model for the thin film-substrate system we found the index of refraction to be (5–5.9) in the photon energy interval from 0.65 to 1.15eV. There is also indication of an additional higher-energy absorption edge at l.05eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Bost and J.M. Mahan: J. Appl. Phys. 58 (1985) 2696.

    Google Scholar 

  2. H. Lange: Phys. Status Solidi B 201 (1997) 3.

    Google Scholar 

  3. D. Leong, M. Harry, K.J. Reeson, and K.P. Homewood: Nature 387 (1997) 686.

    Google Scholar 

  4. Š. Luby, G. Leggieri, A. Luches, M. Jergel, G. Majni, E. Majková, and M. Ožvold: Thin Solid Films 245 (1994) 55.

    Google Scholar 

  5. N.E. Christensen: Phys. Rev. B 42 (1990) 7148.

    Google Scholar 

  6. R. Eppenga: J. Appl. Phys. 68 (1990) 3027.

    Google Scholar 

  7. S. Eisebitt, J.E. Rubensson, M. Nicodemus, T. Böske, S. Blügel, W. Eberhardt, K. Rademacher, S. Mantl, and G. Bihlmayer: Phys. Rev. B 50 (1994) 18330.

    Google Scholar 

  8. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, and H.J. Lange: J. Appl. Phys. 79 (1996) 7708.

    Google Scholar 

  9. V.N. Antonov, O. Jepsen, W. Henrion, M. Rebien, P. Stauß, and H. Lange: Phys. Rev. B 57 (1998) 8934.

    Google Scholar 

  10. M. Ožvold, V. Boháč, V. Gašparík, G. Leggieri, Š. Luby, A. Luches, E. Majková, and P. Mrafko: Thin Solid Films 263 (1995) 92.

    Google Scholar 

  11. C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci: Phys. Rev. B 45 (1992) 8822.

    Google Scholar 

  12. K. Rademacher, R. Carius, and S. Mantl: Nucl. Instrum. Methods Phys. Res. B 84 (1994) 163.

    Google Scholar 

  13. D.H. Tassis, C.L. Mitsas, T.T. Zorba, C.A. Dimitriadis, O. Valassiades, D.I. Siapkas, M. Angelakeris, P. Poulopoulos, N.K. Flevaris, and G. Kiriakidis: J. Appl. Phys. 80 (1996) 962.

    Google Scholar 

  14. L. Miglio: Europhys. News 26 (1995) 25.

    Google Scholar 

  15. E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel: Phys. Rev. B 52 (1995) 20.

    Google Scholar 

  16. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, and K.J. Reeson: J. Appl. Phys. 78 (1995) 1958.

    Google Scholar 

  17. M. Ožvold, V. Gašparík, and M. Dubnička: Thin Solid Films 295 (1997) 147.

    Google Scholar 

  18. U. Birkholz and J. Schelm: Phys. Status Solidi 27 (1968) 413.

    Google Scholar 

  19. P. Muret, I. Ali, and M. Brunel: Semicond. Sci. Technol. 13 (1998) 1170.

    Google Scholar 

  20. M.C. Bost and J.M. Mahan: J. Appl. Phys. 64 (1988) 2034.

    Google Scholar 

  21. P. Mrafko and M. Ožvold: in Optical Diagnostics of Materials and Devices for Opto-, Micro-and Quantum Electronics (Eds. S.V. Svechnikov and M.Ya. Valakh), Proc. SPIE 2648 (1995) 72.

  22. U. Birkholz, H. Finkenrath, J. Naegele, and N. Uhle: Phys. Status Solidi 30 (1968) K81.

    Google Scholar 

  23. L. Wang, L. Qin, Y. Zhen, W. Shen, X. Chen, X. Lin, Ch. Lin, and Sh. Zou: Appl. Phys. Lett. 65 (1994) 3105.

    Google Scholar 

  24. V. Gašparík, M. Dubnička, and M. Ožvold: Acta Physica Universitatis Comenianae XXXVII (1996) 71.

    Google Scholar 

  25. V. Gašparík and M. Ožvold: Acta Phys. Slov. 48 (1998) 417.

    Google Scholar 

  26. E. Arushanov, Ch. Kloc, and E. Bucher: Phys. Rev. B 50 (1994) 2653.

    Google Scholar 

  27. D.J. Oostra, C.W. Bulle-Lieuwma, D.E.W. Vandenhoudt, F. Felten, and J.C. Jans: J. Appl. Phys. 74 (1993) 4347.

    Google Scholar 

  28. K.P. O'Donnell and X. Chen: Appl. Phys. Lett. 58 (1991) 2924.

    Google Scholar 

  29. G. Waldecker, H. Meinhold and U. Birkholz: Phys. Status Solidi A 15 (1973) 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ožvold, M., Mrafko, P. & Gašparík, V. Optical properties of semiconducting iron disilicide thin films. Czechoslovak Journal of Physics 50, 677–686 (2000). https://doi.org/10.1023/A:1022870720999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022870720999

Keywords

Navigation