Skip to main content
Log in

The Role of Soil Properties in Pyrene Sorption and Desorption

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Soil type will greatly affect the sorption and subsequent desorptionof hydrophobic contaminants. To gain a better understanding of theimpact of soil type on sorptive behavior, the sorption-desorption of pyrene (PYR) with three different soils was studied. The first soil originated from Colombia and is classified as silty sand with3.54% soil organic matter (SOM) and 18% clay materials (<2 microns). The New Mexico soil is a sandy lean clay comprisedof 8.4% SOM and 10% clay. The last soil originated fromOhio and is a silty sand with 1.84% SOM and 9.6% clay. Based on soil mineralogy and sorption-desorption isotherms,the Colombia soil had the greatest binding potential followedby the New Mexico and Ohio soils. The Freundlich model couldfit both the Colombia and New Mexico soils. For the Ohiosoil, a two-stage Freundlich model was required. For allthree soils, PYR desorption was slow and resistant, anddepicted an apparent hysteresis. The extent of sorption-desorption for each soil was attributed to its individual classification.For instance, the SOM present in the New Mexico soil (8.4%) enabled a relatively easy desorption in comparison to the other two soils. For the Ohio and Colombia soils, the interaction with the clay fractions rendered a stronger sorptive bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society for Testing and Materials: 1997, 'Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System)', Annual Book of ASTM Standards. 04.08: Soil and Rock (I), ASTM, Washington, U.S.A., pp. D2487–D2493.

    Google Scholar 

  • Brusseau, M. L., Jessup, R. E. and Rao, S. C.: 1991, 'Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes', Environ. Sci. Technol. 25(1), 134–142.

    Google Scholar 

  • Burgos, W. D., Novak, J. T. and Berry, D. F.: 1996, 'Reversible sorption and irreversible binding of naphthalene and α-naphthol to soil: Elucidation of processes', Environ. Sci. Technol. 30(4), 1205–1211.

    Google Scholar 

  • Carnicelli, S., Mirabella, A., Cecchini, G. and Sanesi, G.: 1997, 'Weathering of chlorite to a low-charge expandable mineral in a Spodosol on the Apennine Mountains, Italy', Clays Clay Minerals 45(1), 28–41.

    Google Scholar 

  • Celis, R., Barriuso, E. and Houot, S.: 1998, 'Sorption and desorption of atrazine by sludge-amended soil: Dissolved organic matter effects', J. Environ. Qual. 27, 1348–1356.

    Google Scholar 

  • Chiou, C. T.: 1989, 'Theoretical Considerations of Partition Uptake of Nonionic Organic Compounds by Soil Organic Matter', in B. L. Sawhney and K. Brown (eds), Reactions and Movement of Organic Chemicals in Soils, SSSA Special Publication, No. 22, Soil Science Society of America, Inc., Madison, Wisconsin.

    Google Scholar 

  • Chiou, C. T., McGroddy, S. E. and Kile, D. E.: 1998, 'Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments', Environ. Sci. Technol. 32, 264–269.

    Google Scholar 

  • Cornelissen, G., Rigterink, H., Ferdinandy, M.M. A. and Van Noort, P. C. M.: 1998, 'Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation', Environ. Sci. Technol. 32(7), 966–970.

    Google Scholar 

  • Cornelissen, G., Van Zuilen, H. and Van Noort, P. C. M.: 1999, 'Particle size dependence of slow desorption of on situ PAHs from sediments', Chemosphere 38(10), 2369–2380.

    Google Scholar 

  • Fu, G., Kan, A. T. and Tomson, M.: 1994, 'Adsorption and desorption hysteresis of PAHs on surface sediment', Environ. Toxicol. Chem. 13(10), 1559–1567.

    Google Scholar 

  • Georgi, A. and Kopinke, F. D.: 1998, 'Sorption of hydrophobic organic compounds on dissolved humic substances', UFZ-Ber 22, 1–8.

    Google Scholar 

  • Ghosh, D. P. and Keinath, T. M.: 1994, 'Effect of clay minerals present in aquifer soils on the adsorption and desorption of hydrophobic organic compounds', Environ. Progress 13(1), 51–59.

    Google Scholar 

  • Hassett, J. J. and Banwart, W. L.: 1989, 'The sorption of Nonpolar Organics by Soils and Sediments', in B. L. Sawhney and K. Brown (eds), Reactions and Movement of Organic Chemicals in Soils, SSSA Special Publication, No. 22, Soil Science Society of America, Inc, Madison, Wisconsin.

    Google Scholar 

  • Hines, A. L. and Maddox, R. N., 1985, Mass Transfer: Fundamentals and Applications, Prentice Hall, New Jersey, U.S.A.

    Google Scholar 

  • Huang, W. and Weber Jr., W. J.: 1997, 'A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains', Environ. Sci. Technol. 31(9), 2562–2569.

    Google Scholar 

  • Johnson, W. P. and Amy, G. L.: 1995, 'Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments', Environ. Sci. Technol. 29(3), 807–817.

    Google Scholar 

  • Laor, Y., Farmer, W. J., Aochi, Y. and Strom, P. F.: 1998, 'Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid', Water. Res. 32(6), 1923–1931.

    Google Scholar 

  • Leuking, A. D., Huang, W., Soderstrom-Schwarz, S., Kim, M. and Weber Jr., W. J.: 2000, 'Relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability', J. Environ. Qual. 29(1), 317–323.

    Google Scholar 

  • Mackay, A. A. and Gschwend, P. M.: 2001, 'Enhanced concentrations of PAHs in groundwater at a coal tar site', Environ. Sci. Technol. 35(7), 1320–1328.

    Google Scholar 

  • Muller, S., Totsche, K. U. and Kogel-Knabner, I.: 2000, 'PAH sorption to soil minerals low in or free of organic matter: Kinetics and mechanisms', ACS Div. Environ. Chemistry Extended Abstracts 40(2), 174–175.

    Google Scholar 

  • Murphy, E.M., Zachara, J. M. and Smith, S. C.: 1990, 'Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds', Environ. Sci. Technol. 24(10), 1507–1516.

    Google Scholar 

  • Newman, A. C. D.: 1987, Chemistry of Clays and Clay Minerals, John Wiley & Sons, New York.

    Google Scholar 

  • Page, A. L., Miller, R. H. and Keeney, D. R.: 1982, Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd ed., American Society of Agronomy, Inc., Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Parfitt, R. L., Giltrap, D. J. and Whitton, J. S.: 1995, 'Contribution of organic matter and clay minerals to the cation exchange capacity of soils', Commun. Soil Sci. Plant Anal. 26(9- 10), 1343–1355.

    Google Scholar 

  • Pavlostathis, S. G. and Mathavan, G. N.: 1992, 'Desorption kinetics of selected volatile organic compounds from field contaminated soils', Environ. Sci. Technol. 26(3), 532–538.

    Google Scholar 

  • Pignatello, J. J.: 1989, 'Sorption Dynamics of Organic Compounds in Soils and Sediments', in B. L. Sawhney and K. Brown (eds), Reactions and Movement of Organic Chemicals in Soils, SSSA Special Publication, No. 22, Soil Science Society of America, Inc. Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Potter, C. L., Glaser, J. A., Chang, L. W., Meier, J. R., Dosani, M. A. and Herrman, R. F.: 1999, 'Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions', Environ. Sci. Technol. 33(10), 1717–1725.

    Google Scholar 

  • Ramirez, N. E. P.: 1999, 'Elucidation of Sorption, Desorption and Biodegradation Phenomena of Pyrene Spiked Soils', M.S. Thesis, University of Akron, Akron, Ohio.

    Google Scholar 

  • Schlebaum, W., Schraa, G. and Van Riemsdijk, W.: 1999, 'Influence of nonlinear sorption kinetics on the slow-degrading organic contaminant fraction in soil', Environ. Sci. Technol. 33(9), 1413–1417.

    Google Scholar 

  • Schluepen, J., Haegel, F.-H., Kuhlmann, J., Geisler, H. and Schwuger, M. J.: 1999, 'Sorption hysteresis of pyrene on zeolite', Colloids and Surfaces A: Physicochemical and Eng. Aspects 156, 335–347.

    Google Scholar 

  • Velde, B.: 1992, Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance, Chapman and Hall, New York.

    Google Scholar 

  • Xing, B. and Pignatello, J. J.: 1996, 'Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism', Environ. Toxicol. Chem. 15(8), 1282–1288.

    Google Scholar 

  • Zhu, D., Herbert, B. E., Schlautman, M. A. and Carraway, E. R.: 2000, 'Spectroscopic evidence for a Pi-cation sorption mechanism for PAHs on hydrated mineral surfaces', ACS Div. Environ. Chemistry Extended Abstracts 40(2), 163–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Cutright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S., Ramirez, N., Cutright, T.J. et al. The Role of Soil Properties in Pyrene Sorption and Desorption. Water, Air, & Soil Pollution 143, 65–80 (2003). https://doi.org/10.1023/A:1022863015709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022863015709

Navigation