Skip to main content
Log in

Action of corona discharges on bacteria and spores

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

We have measured the E.coli bactericidal efficiency of DC and AC point-to-plane coronas in air and in argon in the corona modes positive glow, positive streamer, negative Trichel pulse and negative glow. Negative Trichel pulse and positive streamer coronas are the most efficient for production of bactericidal agents in air. Less than 5 minute exposure to the products from 30 μA of these coronas will sterilize the E.coli covered agar surfaces in a 3l volume to a survival ratio of 10−5. Positive glow coronas are two orders of magnitude less efficient. 50 Hz AC coronas seem to mainly work during the negative half cycles. The bactericidal agent(s) produced by the coronas have not all been identified, but ozone O3 with concentration 35–40 ppm is probably the most important one. We show that charged particles and photons can play only a minor role, so the agent(s) must be neutral particles. The main part of them must have a lifetime in the vessel of more than 3 minutes. The much smaller, and volume/distance dependent, efficiency of coronas in humid argon indicates that metastable neutrals or radicals from H2O can play only a minor role. A preliminary test showed negligible effects of the corona treatment on the spores of Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Sigmond and M. Goldman: in Electrical Breakdown and Discharges in Gases (Eds. E. E. Kunhaidt and L. H. Luessen), NATO ASI series B, Physics, Vol. 89B, Plenum Press, New York, 1983, p. 1.

    Google Scholar 

  2. A. Goldman and J. Amouroux: in Electrical Breakdown and Discharges in Gases (Eds. E. E. Kunhardt and L. H. Luessen), NATO ASI series B, Physics, Vol. 89B, Plenum Press, New York, 1983, p. 346.

    Google Scholar 

  3. A. M. Ostapenkov, Yu. V. Kaptereva, N. S. Merinov, and V. L. Lavrova: Electrochem. in Industrial Processing and Biology 1 (1979) 65.

    Google Scholar 

  4. M. K. Bologa et al.: Elektronnaya Obrabotka Materialov 2 (1982) 62.

    Google Scholar 

  5. Wu Yan, Wang Xilu, and Xia Bin: J. Electrostatics 28 (1992) 1.

    Google Scholar 

  6. S. A. Hoenig, G. T. Sill, L. M. Kelley, and K. J. Garvey: J. Air Pollution Control Assoc. 30 (1980) 277.

    Google Scholar 

  7. S. Masuda, S. Hosokawa, X-L Tu, N. TsuTsumi, T. Ohtani, T. Tsukahara, and N. Matsuda: IEEE Trans. Ind. Appl. 29 (1993) 774.

    Google Scholar 

  8. R. S. Sigmond and I. H. Lagstad: J. High Temp. Chem. Process. 2 (1993) 221.

    Google Scholar 

  9. R. S. Sigmond: in Proc. 4th Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE IV), Comenius University, Bratislava (Slovakia), 1993, pp. xv-xx.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmond, R.S., Kurdelova, B. & Kurdel, M. Action of corona discharges on bacteria and spores. Czechoslovak Journal of Physics 49, 405–420 (1999). https://doi.org/10.1023/A:1022861403580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022861403580

Keywords

Navigation