Skip to main content
Log in

The Formation of Nano-sized Selenium–titanium Dioxide Composite Semiconductors by Photocatalysis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nano-sized selenium (Se) particles were deposited onto titanium dioxide (TiO2) by the photocatalytic reduction of selenate (Se(VI)) and selenite (Se(IV)) ions. Se particles deposition on TiO2 was only observed in the presence of formic acid, which acted as the organic hole scavenger. The Se particles formed were crystalline. Se particles of different size could be formed onto the TiO2 particles by manipulating experimental parameters such as pH and the Se precursor used. When Se(VI) ions were used as the precursor, the Se particles formed on TiO2 were found to be spherical in shape, up to 6 times bigger than the TiO2 particles (up to 145 nm) and discretely formed on the TiO2 particles. The growth and sphericity of the Se particles were explained in terms of electron transfer across the p–n junctions formed by the p-type Se and n-type TiO2 semiconductors under illumination and the adsorption of the Se(VI) ions. The size of the Se particles were found to be dependent on the amount of Se(VI) photoreduced. When Se(IV) ions were used as the precursor for Se particles formation, the particles formed were much smaller than that of TiO2 crystals (less than 25 nm) and also more evenly dispersed on the TiO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam M. & R.A. Montalvo, 1998. Titania-assisted photoreduction of Cr(VI) to Cr(III) in aqueous media: Kinetics and mechanisms. Metall. Mater. Trans. B 29B: 95-140.

    Google Scholar 

  • Chen D., M. Sivakumar & A.K. Ray, 2000. Heterogeneous photocatalysis in environmental remediation. Dev. Chem. Eng. Mineral Process 8(5/6): 505-550.

    Google Scholar 

  • Chenthamarakshan C.R. & K. Rajeshwar, 2000. Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: An interfacial induced adsorption-reduction pathway mediated by formate ions. Electrochem. Commun. 2(2): 527-530.

    Google Scholar 

  • Dalven R., 1990. Chapter 7: Detectors and generators of EM radiation. Introduction to applied solid state physics, 2nd edn. Plenum Press, New York and London, pp. 177-216.

    Google Scholar 

  • Dalven R., 1990. Chapter 2: The semiconductor p-n junction. Introduction to applied solid state physics, 2nd edn. Plenum Press, New York and London, pp. 27-80.

    Google Scholar 

  • Dalven R., 1990. Chapter 3: Semiconductor p-n junction devices. Introduction to applied solid state physics, 2nd edn. Plenum Press, New York and London, pp. 81-110.

    Google Scholar 

  • Davis A. & D.L. Green, 1999. Photocatalytic oxidation of cadmium-EDTA with titanium dioxide. Environ. Sci. Technol. 33: 609-617.

    Google Scholar 

  • Fujishima A. & K. Honda, 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37.

    Google Scholar 

  • Greenwood N.N. & A. Earnshaw, 1997. Chapter 16: Selenium, tellurium and polonium. In: Greenwood N.N. and Earnshaw A. eds. Chemistry of the Elements, 2nd edn. Butterworth-Heinemann, pp. 747-788.

  • Hagfeldt A. & M. Gratzel, 1995. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1): 49-68.

    Google Scholar 

  • Huang M., E. Tso, A.K. Datye, M.R. Prairie & B.M. Stange, 1996. Removal of silver in photographic processing waste by TiO2-based photocatalysis. Environ. Sci. Technol. 30: 3084-3088.

    Google Scholar 

  • Kasap S.O., M. Baxendale & C. Juhasz, 1991. Xerographic properties of a-Se: Te photoconductors. IEEE Trans. Industry Appl. 27(4): 620-626.

    Google Scholar 

  • Kasap S.O., C. Haugen, M. Nesdoly & J.A. Rowlands, 2000. Properties of a-Se for use in flat panel X-ray image detectors. J. Non-Cryst. Solids 266-269: 1163-1167.

    Google Scholar 

  • Khalil L.B., M.W. Ropheal & W.E. Mourad, 2002. The removal of the toxic Hg(II) salts from water by photocatalysis. Appl. Catal. B: Environ. 36: 125-130.

    Google Scholar 

  • Kikuchi E. & H. Sakamoto, 2000. Kinetics of the reduction reaction of selenate ions by TiO2 photocatalyst. J. Electrochem. Soc. 147(12): 4589-4593.

    Google Scholar 

  • Ku Y. & I.L. Jung, 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35(1): 135-142.

    Google Scholar 

  • Kudo A., K. Domen, K. Maruya & T. Onishi, 1987. Photocatalytic reduction of NO3-to form NH3 over Pt-TiO2. Chem. Lett. 1019-1022.

  • Litter M.I., 1999. Review: Heterogeneous photocatalysis transition metals ions in photocatalytic systems. Appl. Catal. B: Environ. 23: 89-114.

    Google Scholar 

  • Loretto M.H., 1994. Chapter 4. Interpretation of diffraction information. In: Loretto M.H. Electron Beam Analysis of Materials, 2nd edn. Chapman & Hall, London.

    Google Scholar 

  • Memming R., 1990. Photochemical utilization of solar energy. Photochemistry and Photophysics. vol. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Micic O.I., Y. Zhang, K.R. Cromack, A.D. Trifunac & M.C. Thurnauer, 1993. Trapped holes on TiO2 colloids studied by electron paramagnetic, resonance. J. Phys. Chem. 97: 7277-7283.

    Google Scholar 

  • Murov S.L., I. Carmichael & G.L. Hug, 1993. Chapter 13: Chemical Actonimetry. Handbook of Photochemistry. Marcel Dekker, Inc, New York, pp. 298-305.

    Google Scholar 

  • Neuhauser R.G., 1987. Photoconductors utilized in TV camera tubes. J. Electrochem. Soc. 134(1): 5C-13C.

    Google Scholar 

  • Oldfield J.E., 1995. SeRendipity. Chemtech March, 52-55.

  • Pal B. & M. Sharon, 2000. Photodegradation of polyaromatic hydrocarbons over thin film of TiO2 nanoparticles: A study of intermediate photoproducts. J. Mol. Catal. A: Chem. 160(2): 453-460.

    Google Scholar 

  • Parker C.A., 1953. A new sensitive chemical actinometer I. Some trials with potassium ferrioxalate. Proc. Roy. Soc. 220: 104-116.

    Google Scholar 

  • Parker C.A., 1953. A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer. Proc. Roy. Soc. 518-536.

  • Parmon V., A.V. Emeline & N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Int. J. Photoenergy 4: 91-131.

    Google Scholar 

  • Pejova B. & I. Grozdanov, 2001. Solution growth and characterization of amorphous selenium thin films. Heat transformation to nanocrystalline gray selenium thin films. Appl. Surf. Sci. 117: 152-157.

    Google Scholar 

  • Peñuela G.A. & D. Barceló, 1998. Photosensitized degradation of organic pollutants in water: Processes and analytical applications. Trends Anal. Chem. 17(10): 605-612.

    Google Scholar 

  • Rajeshwar K. & J.G. Ibanez, 1998. Chapter 6: Environmental photocatalysis. In: Rajeshwar K. and Ibanez J.G. eds. Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement. Academic Press, New York, pp. 499-625.

    Google Scholar 

  • Sanuki S., T. Kojima, K. Arai, S. Nagaoka & H. Majima, 1999. Photocatalytic reduction of selenate and selenite solutions using TiO2 powders. Metall. Mater. Trans. B 30B: 15-20.

    Google Scholar 

  • Sanuki S., K. Shako, S. Nagaoka & H. Majima, 2000. Photocatalytic reduction of Se ions using suspended anatase powders. Mater. Trans. JIM 41(7): 799-805.

    Google Scholar 

  • Sauer M.L. & D.F. Ollis, 1996. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J. Catal. 158: 570-582.

    Google Scholar 

  • Sclafani A., M.N. Mozzanega & P. Pichat, 1991. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A. Chem. 59: 181-189.

    Google Scholar 

  • Spanbel L., H. Weller & A. Henglein, 1987. Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles. J. Am. Chem. Soc. 109: 6632-6635.

    Google Scholar 

  • Streltsov E.A., S.K. Poznyak & N.P. Osipovich, 2002. Photoinduced and dark underpotential deposition of lead on selenium. J. Electroanal. Chem. 518: 103-114.

    Google Scholar 

  • Sun Z., Y.C. Qiang, Y.Y. Ke & J. Yuan, 2002. Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J. Photochem. Photobiol. A: Chem. 149(1-3): 169-174.

    Google Scholar 

  • Tada H., K. Teranishi, Y. Inubushi & S. Ito, 1998. TiO2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H2O: Incorporation effect of nanometer-sized Ag particles. Chem. Commun. 2345-2346.

  • Tan T.Y., D. Beydoun, R. Amal & M. Zaw, 2002. Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: Importance of stoichiometric ratio of reactants on TiO2 surface. J. Mol. Catal. A: Chem.

  • Thiel C.W., 1999. An introduction to semiconductor radiation detectors. Montana State University, Bozeman, 20 April 1999, pp. 1-20.

    Google Scholar 

  • Thurnauer M.C., T. Rajh & D.M. Tiede, 1997. Surface modification of TiO2: Correlation between structure, charge separation and reduction properties. Acta Chem. Scand. 51: 610-618.

    Google Scholar 

  • Turchi C.S. & D.F. Ollis, 1990. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122: 178-192.

    Google Scholar 

  • Vidal A. & M.A. Martin Luengo, 2001. Inactivation of titanium dioxide by sulpur: Photocatalytic degradation of vapam. Appl. Catal. B: Environ. 32: 1-9.

    Google Scholar 

  • Yamashita H., M. Harada, J. Misaka, M. Takeuchi, K. Ikeue & M. Anpo, 2002. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A; Chem. 6003: 1-5.

    Google Scholar 

  • Yoneyama H., Y. Yamashita & H. Tamura, 1979. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 282(20/27): 817-818.

    Google Scholar 

  • Yoneyama H., 1993. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit. Rev. Solid State Mater. Sci. 18(1): 69-111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Amal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T.T., Zaw, M., Beydoun, D. et al. The Formation of Nano-sized Selenium–titanium Dioxide Composite Semiconductors by Photocatalysis. Journal of Nanoparticle Research 4, 541–552 (2002). https://doi.org/10.1023/A:1022858409731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022858409731

Navigation