Skip to main content
Log in

The Influence of Glutathione on Physiological Effects of Lead and its Accumulation in Moss Sphagnum Squarrosum

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

An attempt has been made to study the physiological andbiochemical responses and to evaluate the bioaccumulationpotential of moss Sphagnum to environmental lead. Supply of0.1 to 100 mM lead acetate caused a loss in chlorophyll andnitrogen content of moss and in nitrate reductase activity in themoss, although the peroxidase activity was increased. Partialrecovery in the above parameters was recorded upon simultaneoustreatment with glutathione. Results also indicate that treatmentwith glutathione increased the bioaccumulation potential bylowering the lead toxicity, which could be the result of inductionof metal binding capabilities of cells as the heavy metal alsoinduced the synthesis of phytochelatins. The moss accumulated asignificant amounts of Pb under both experimental and fieldconditions. The heavy metal accumulated by moss was positivelycorrelated to the soil metal content. The experiments demonstratethat Sphagnum is able to accumulate and tolerate higheramounts of Pb and therefore, it can be used as a bioindicator andphytoremediator of lead contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher, R. G.: 1989, 'Biosynthesis and antioxidant function of glutathione in plants', Plant Physiol. 77, 457–464.

    Google Scholar 

  • Arnon, D. I.: 1949, 'Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris', Plant Physiol. 24, 1–15.

    Google Scholar 

  • Bhandal, I. S. and Kaur, H.: 1992, 'Heavy metal inhibition of nitrate uptake and in vivo nitrate reductase in roots of wheat, Triticum aestivum', Indian J. Plant Physiol. 35, 281–284.

    Google Scholar 

  • Bhattacharya, M., Choudhury, M. A. and Bhattacharya, M.: 1995, 'Heavy metal (Pb2+ and Cd2+) stress induced damages in Vigna seedings and possible involvement of phytochelatin like substances in mitigation of heavy metal stress', Indian J. Exper. Biol. 33(3), 236–238.

    Google Scholar 

  • Bruns, I., Friese, K., Friese, K., Markert, B. and Krauss, G. J.: 1997, 'The use of Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. 2. Heavy metal accumulation and physiological reaction of Fontinalis antipyretica L. ex Hedw. in active biomonitoring in the river Elbe', Sci. Total Environ. 204(2), 161–176.

    Google Scholar 

  • Chen, S. L. and Kao, S. H.: 1995, 'Glutathione reduces the inhibition of rice seeding root growth catalyzed by cadmium', Plant Growth Regul. 16, 249–252.

    Google Scholar 

  • Chitkara, S.: 1998, 'Air Pollution in India - An Exploratory Study', In Proceedings of National Workshop on Environmental Statistics, Goa, India, 12- 13 January, 1998, pp. 117–127.

  • Crist, R. H., Martin, J. R. and Chonko, J. D. R.: 1996, 'Uptake of metals on peat moss: An ion exchange process', Environ. Sci. Technol. 30(8), 2456–2461.

    Google Scholar 

  • Echols, R. and Kisailus, E.: 1992, 'Cell Fractionation in Plants', in J. G. Chirikjian, (ed.), Biotechnology: Theory and Techniques. Plant Biotechnology, Animal Cell Culture and Immunobiotechnology.

  • Gallego, S. M., Benavides, M. P. and Tomaro, M. L.: 1996, 'Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus L.) plants', Phyton Buenos Aires 58, 41–52.

    Google Scholar 

  • Glime, J. M. and Saxena, D. K.: 1991, Uses of Bryophytes, Today's and Tomorrow Printers and Publishers, New Delhi.

    Google Scholar 

  • Godbold, D. L: 1994, 'Aluminium and Heavy Metal Stress: From the Rhizosphere to the Whole Plant', in D. L. Godbold, and Z. Zhutterman, (eds), Effects of Acid Rain on Forest Processes, Wiley-Liss, New York, pp. 232–264.

    Google Scholar 

  • Grill, E., Winnacker, E. L. and Zenk, M. H.: 1991, 'Phytochelatins', in J. F. Riordon and B. L. Valle (eds), Methods in Enzymology, Vol. 205, Academic Press, New York, pp. 333–341

    Google Scholar 

  • Gupta, M., Raj, U. N., Tripathi, R. D. and Chandra, P.: 1995, 'Induced changes in glutathione and phytochelatin in Hydrilla verticillata (L. f.) Royle', Chemosphere 30(10), 2011–2020.

    Google Scholar 

  • Gupta, M., Tripathi, R. D., Raj, U. N. and Haq, W.: 1999, 'Lead induced synthesis of metal binding peptides (phytochelatins) in the submerged macrophyte Vallisneria spiralis L.', Physiol. Molec. Biol. Plants 5, 173–180.

    Google Scholar 

  • Jackson, M. L.: 1962, 'Nitrogen Determination from Soil and Plant Tissue' in Soil and Chemical Analysis, Prentice Hall, U.S.A., pp. 185–191.

    Google Scholar 

  • Jita, P., Panda, B. B. and Pantra, J.: 1998, 'A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L.', Environ. Pollut. 101, 99–105.

    Google Scholar 

  • Leopold, I., Gunther, D. M., Schinidt, J. and Neumann, D.: 1999, 'Phytochelatins and heavy metal tolerance', Phytochem. 50, 1323–1325.

    Google Scholar 

  • Lowry, O. H., Rose, N. J., Brough, A. L. and Randall, N. R. J.: 1951, 'Protein measurement with foline phenol reagent', J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Nakazawa, A. and Takenaga, H.: 1998, 'Interactions between cadmium and several heavy metals in the activation of the catalytic activity of phytochelatin synthase', Soil Sci. Plant Nutrit. 44, 265.

    Google Scholar 

  • Nag, P., Paul, A. K. and Mukherjee, S. K.: 1981, 'Heavy metal effects in plants tissues involving chlorophyll, chlorophyllase, Hill reaction activity and gel electrophoretic patterns of soluble proteins', Indian J. Experim. Biol. 19, 702–706.

    Google Scholar 

  • Putter, J.: 1974, Methods of Enzymatic Analysis 2, in Bergmeyer (ed.), Academic Press, New York, pp. 685.

    Google Scholar 

  • Rauser, W. E.: 1995, 'Phytochelatins and related peptide: Structure, biosynthesis and function', Plant Physiol. 109, 1141–1149.

    Google Scholar 

  • Saxena, D. K. and Thomas, S.: 1998, 'Possible Involvement of Phytochelatin like Substances in Mitigation of Heavy Metal Stress in Bryophytes', in 'Moss 98', International Conference held at T. I. F. R., Mumbai.

  • Saxena, D. K., Saxena, A. and Srivastava, H. S.: 1999, 'Heavy Metal Accumulation and In Vivo Nitrate Reductase Activity in the Sphagnum squarrosum Cram Samml.', Proceedings of the National Academy of Sciences, India 69(B) III and IV, pp. 307–312.

    Google Scholar 

  • Shimwell, D.W. and Laurie, A. E.: 1972, 'Lead and zinc contamination of vegetation in the Southern Pennines', Environ. Pollut. 3, 291–301.

    Google Scholar 

  • Sinha, S. K., Srivastava, H. S. and Mishra, S. N.: 1988, 'Nitrate assimilation in intact and excised maize leaves in the presence of lead', Bull. Environ. Contamin. Toxicol. 41, 419–426.

    Google Scholar 

  • Srivastava, H. S.: 1975, 'Distribution of nitrate reductase in aging bean seedlings', Plant Cell Physiol. 16, 995–999.

    Google Scholar 

  • Steffens, J. C.: 1990, 'The heavy metal binding peptides of plants', Ann. Rev. Plant Physiol. Plant Molec. Biol. 41, 553–575.

    Google Scholar 

  • Steinnes, E.: 1996, 'Heavy Metals in NorwegianWildlife: Contributions from Natural and Anthropogenic Sources', in J. Lag (ed.), Chemical Data of Plant, Animal and Human Tissue as a Basis of Geomedical Investigations, The Norwegian Academy of Science and Letters, Oslo, pp. 101–113.

    Google Scholar 

  • Steinnes, E.: 1997, 'Monitoring of Contaminants in the Arctic by Means of Terrestrial Mosses and Surface Soils', in AMAP International Symposium on Environmental Pollution in the Arctic, Vol. 1, Tromso, Norway, pp. 151–152.

    Google Scholar 

  • Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I. and Sherwood, R. P.: 1985, 'The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley', Plant Physiol. 63, 293–298.

    Google Scholar 

  • Syso, A. S.: 1998, 'Using the Cr, Ni relationship for monitoring environmental pollution', Agrokhimiya 4, 76–83.

    Google Scholar 

  • Thapa, D., Srivasatava, H. S. and Ormrod, D. I.: 1988, 'Physiological and biochemical effects of lead on higher plants', Vegetos 1, 107–119.

    Google Scholar 

  • Van Assche, F. and Clijsters J.: 1990, 'Effects of metals on enzyme activity in plants', Plant Cell Environ. 13, 195–206.

    Google Scholar 

  • Vasconcelos, M. T. S. D. and Taveres, H. M. F.: 1998, 'Atmospheric metal pollution (Cr, Cu, Fe,Mn, Ni, Pb and Zn) in Oporto city derived from results for low volume aerosol samplers and for the moss Sphagnum auriculatum bioindicator', Sci. Total Environ. 212(1), 11–20.

    Google Scholar 

  • Vile, M., Wieder, P. K. and Martin, N.: 1999, '200 Years of Pb deposition throughout the Czech Republic patterns and source', Environ. Sci. Technol. 34(1), 12–21.

    Google Scholar 

  • Weiss, D., Shotyk, W., Cheburkin, A. K., Gloor, M. and Reese, S.: 1997, 'Atmospheric lead deposition from 12400 to 2000 years B.C. in a peat bog profile, in Jura mountains, Switzerland', Water, Air, and Soil Pollut. 100(3- 4), 311–324.

    Google Scholar 

  • Zenk, M. H.: 1996, 'Heavy metal detoxification in higher plants - A review', Gene 179, 21–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, A., Saxena, D.K. & Srivastava, H.S. The Influence of Glutathione on Physiological Effects of Lead and its Accumulation in Moss Sphagnum Squarrosum . Water, Air, & Soil Pollution 143, 351–361 (2003). https://doi.org/10.1023/A:1022856807592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022856807592

Navigation