Skip to main content
Log in

High-Temperature Superconducting Microstrip Transmission Lines

  • Published:
Russian Physics Journal Aims and scope

Abstract

A model calculation of a two-wire Josephson transmission line with a quasi-transverse electromagnetic wave is performed. The dispersion characteristics of the wave are estimated. The group velocity is shown to be (4.1–2.5)·107 m/s for a temperature of 76–85.9 K, a critical current of 109 A/m2, a dielectric plate thickness of 10 μm, and a relative permittivity of 40. The wave attenuation in this temperature range is ≤2 db/dm at a frequency of 10 GHz. The rough estimates suggest the feasibility of designing microstrip transmission lines based on granular high-temperature superconducting films. These lines will provide delays up to 1 μs and picosecond pulse transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. S. Winders and R. U. Rolston, Sverkhprovodimost', 77, No. 8, 105-183 (1989).

    Google Scholar 

  2. A. A. Kiselev (ed.), High-temperature Superconductivity. Basic and Applied Research, Edition 1, Mashinostroyeniye, Leningrad 1990) p. 17.

    Google Scholar 

  3. T. Van Duser and C. W. Turner, Principles of Superconductive Devices and Circuits [Russian translation], Radio i Svyaz', Moscow (1984).

    Google Scholar 

  4. E. Z. Meilikhov and V. G. Shapiro, Sverkhprovodn. Fiz. Tekhn. Khim., 4, No. 8, 1437 (1991).

    Google Scholar 

  5. K. K. Likharev and B. T. Ulrich, Systems with Josephson Contacts. The Fundamentals of the Theory, Moscow University Press (1989).

  6. V. A. Krakovskii and E. S. Kovalenko, Russ. Phys. J., 38, No. 8, 844-848 (1995).

    Google Scholar 

  7. V. E. Galkin and E. S. Kovalenko, in: Proceedings of the Seventh Int. Conf. High-Power Microwave Electronics: Measurements, Identification and Applications, Novosibirsk, (1997) pp. 124-128.

    Google Scholar 

  8. V. A. Krakovskii, Izv. Vyssh. Uchebn. Zaved. Fiz., 42, No. 7, 89-92 (1999).

    Google Scholar 

  9. V. A. Krakovskii, Russ. Phys. J., 45, No. 10, 947-954 (2002).

    Google Scholar 

  10. M. V. Belodedov and V. K. Ignatiev, Sverkhprovodn. Fiz. Tekhn. Khim., 3, No. 6, 1170-1173 1990).

    Google Scholar 

  11. M. V. Belodedov and V. K. Ignatiev, Sverkhprovodn. Fiz. Tekhn. Khim., 4, No. 9, 1661-1667 (1991).

    Google Scholar 

  12. V. K. Ignatiev, Sverkhprovodn. Fiz. Tekhn. Khim., 7, No. 2, 215-222 (1994).

    Google Scholar 

  13. E. Z. Meilikhov and V. G. Shapiro, Sverkhprovodn. Fiz. Tekhn. Khim., 4, No. 8, 1437 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krakovskii, V.A. High-Temperature Superconducting Microstrip Transmission Lines. Russian Physics Journal 45, 955–961 (2002). https://doi.org/10.1023/A:1022854631375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022854631375

Keywords

Navigation