Catalysis Letters

, Volume 87, Issue 1–2, pp 37–42 | Cite as

A Novel KCaNi/α-Al2O3 Catalyst for CH4 Reforming with CO2

  • Zhaoyin Hou
  • Osamu Yokota
  • Takumi Tanaka
  • Tatsuaki Yashima
Article

Abstract

A potassium and calcium co-promoted nickel catalyst (KCaNi/α-Al2O3) prepared by a direct impregnation method possessed a high activity, high stability and excellent coke resistance properties in CH4 reforming with CO2. XRD, XPS and H2-TPR characterizations indicated that (i) Ca and K strengthened the interaction between Ni and α-Al2O3 and promoted the formation of a unique NiAl2O4 phase on the surface of the catalyst and (ii) Ca and K increased the dispersion of Ni and retarded its sintering. Coking reactions (CH4 temperature-programmed decomposition and O2-TPO) disclosed that K reduced carbon formation via CH4 decomposition.

CH4 dry reforming KCaNi catalyst TPR TPSR XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. C. J. Bradford and M. A. Vannice, Catal. Rev. Sci. Eng. 41 (1999) 1.Google Scholar
  2. [2]
    T. P. Beebe,Jr., D. W. Goodman, B. D. Kay and J. T. Yates,Jr., J. Chem. Phys. 87 (1987) 2305.Google Scholar
  3. [3]
    F. Solymosi, J. Mol. Catal. A65 (1991) 337.Google Scholar
  4. [4]
    L. M. Aparicio, J. Catal. 165 (1997) 262.Google Scholar
  5. [5]
    J. Erkelens and W. J. Wosten, J. Catal. 54 (1978) 54.Google Scholar
  6. [6]
    C. Minot, M. A. van Hove and G. A. Somorjai, Surf. Sci. 127 (1982) 441.Google Scholar
  7. [7]
    A. D. E. Koster and R. A. van Santen, J. Catal. 127 (1991) 141.Google Scholar
  8. [8]
    C. Zhang, Y. Apeloig and R. Hoffman, J. Am. Chem. Soc. 110 (1988) 749.Google Scholar
  9. [9]
    Z. L. Zhang and X. E. Verkios, Catal. Today 21 (1994) 589.Google Scholar
  10. [10]
    C. D. Huang and J. T. Richardson, J. Catal. 51 (1978) 1.Google Scholar
  11. [11]
    D. W. Goodman and M. Kiskinova, Surf. Sci. 105 (1981) L265.Google Scholar
  12. [12]
    T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and T. Mori, Appl. Catal. A144 (1996) 111.Google Scholar
  13. [13]
    A. Diaz, D. R. Acosta, J. A. Odriozola and M. Moutes, J. Phys. Chem. B101 (1997) 1782.Google Scholar
  14. [14]
    Z. Cheng, Q. Wu, J. Li and Q. Zhu, Catal. Today 30 (1996) 147.Google Scholar
  15. [15]
    V. R. Choudhary, B. S. Uphade and A. S. Mamman, Catal. Lett. 32 (1995) 387.Google Scholar
  16. [16]
    R. Lodeng, M. Barre-Chassonnery, M. Fathi, O. A. Rokstad and A. Holmen, Stud. Surf. Sci. Catal. 111 (1997) 561.Google Scholar
  17. [17]
    S. B. Tang, F. L. Qiu and S. J. Lu, Catal. Today 24 (1995) 253.Google Scholar
  18. [18]
    T. Tanaka, Z. Y. Hou, O. Yokota and T. Yashima, Energy (in press).Google Scholar
  19. [19]
    T. Osaki and T. Mori, J. Catal. 204 (2001) 89.Google Scholar
  20. [20]
    K. Walter, O. V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 261.Google Scholar
  21. [21]
    J.-S. Chang, S.-E. Park, J. W. Yoo and J.-N. Park, J. Catal. 195 (2000) 1.Google Scholar
  22. [22]
    J.-S. Chang, S.-E. Park, K. W. Lee and M. J. Choi, Stud. Surf. Sci. Catal. 84 (1994) 1587.Google Scholar
  23. [23]
    G. Bergeret and P. Gallezot, in: Handbook of Heterogeneous Catalysis, Vol. 2, eds. G. Ertl, H. Knozinger and J. Weitkamp (VCH, Weinheim, 1997) p. 439.Google Scholar
  24. [24]
    B. Q. Xu, J. M. Wei, H. Y. Wang, K. Q. Sun and Q. M. Zhu, Catal. Lett. 68 (2001) 217.Google Scholar
  25. [25]
    L. Kepinski, S. Stasinska and T. Borowiecki, Carbon 38 (2000) 1845.Google Scholar
  26. [26]
    W. M. Mullins and B. L. Averbach, Surf. Sci. 29 (1988) 206.Google Scholar
  27. [27]
    S. Kasztelan, J. Grimblot, J. P. Bonnelle, E. Payen, H. Toulhoat and Y. Jacquin, Appl. Catal. A91 (1983) 7.Google Scholar
  28. [28]
    P. Legare and A. Fritsch, Surf. Interf. Anal. 15 (1990) 698.Google Scholar
  29. [29]
    J. F. Moulder, in: Handbook of X-ray Photoelectron Spectroscopy, eds. J. Chastain and R. C. King,Jr. (Physical Electronics Inc., 1992).Google Scholar
  30. [30]
    M. A. Goula, A. A. Lemonidou and A. M. Efstathiou, J. Catal. 161 (1996) 626.Google Scholar
  31. [31]
    Y. Joseph, G. Ketteler, C. Kuhrs, W. Ranke, W. Weiss and R. Schlogl, Phys. Chem. Chem. Phys. 3 (2001) 4141.Google Scholar
  32. [32]
    R. Molina and G. Poncelet, J. Catal. 173 (1998) 257.Google Scholar
  33. [33]
    C. E. Quincoces, A. Diaz, M. Montes, E. N. Ponzi and M. G. Gonzalez, Stud. Surf. Sci. Catal. 139 (2001) 85.Google Scholar
  34. [34]
    Y. G. Chen and J. Ren, Catal. Lett. 29 (1994) 39.Google Scholar
  35. [35]
    Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou and Z. Duan, Appl. Catal. A210 (2001) 45.Google Scholar
  36. [36]
    Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou and Z. Duan, Appl. Catal. A213 (2001) 65.Google Scholar
  37. [37]
    Y. J. Huang, J. P. Schwarz, J. R. Diehl and J. P. Baltrus, Appl. Catal. 36 (1988) 163.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Zhaoyin Hou
    • 1
  • Osamu Yokota
    • 1
  • Takumi Tanaka
    • 1
  • Tatsuaki Yashima
    • 1
  1. 1.Chemical Research GroupResearch Institute of Innovative Technology for the Earth (RITE)Soraku-gun, KyotoJapan

Personalised recommendations