Catalysis Letters

, Volume 87, Issue 1–2, pp 37–42 | Cite as

A Novel KCaNi/α-Al2O3 Catalyst for CH4 Reforming with CO2

  • Zhaoyin Hou
  • Osamu Yokota
  • Takumi Tanaka
  • Tatsuaki Yashima


A potassium and calcium co-promoted nickel catalyst (KCaNi/α-Al2O3) prepared by a direct impregnation method possessed a high activity, high stability and excellent coke resistance properties in CH4 reforming with CO2. XRD, XPS and H2-TPR characterizations indicated that (i) Ca and K strengthened the interaction between Ni and α-Al2O3 and promoted the formation of a unique NiAl2O4 phase on the surface of the catalyst and (ii) Ca and K increased the dispersion of Ni and retarded its sintering. Coking reactions (CH4 temperature-programmed decomposition and O2-TPO) disclosed that K reduced carbon formation via CH4 decomposition.

CH4 dry reforming KCaNi catalyst TPR TPSR XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. C. J. Bradford and M. A. Vannice, Catal. Rev. Sci. Eng. 41 (1999) 1.Google Scholar
  2. [2]
    T. P. Beebe,Jr., D. W. Goodman, B. D. Kay and J. T. Yates,Jr., J. Chem. Phys. 87 (1987) 2305.Google Scholar
  3. [3]
    F. Solymosi, J. Mol. Catal. A65 (1991) 337.Google Scholar
  4. [4]
    L. M. Aparicio, J. Catal. 165 (1997) 262.Google Scholar
  5. [5]
    J. Erkelens and W. J. Wosten, J. Catal. 54 (1978) 54.Google Scholar
  6. [6]
    C. Minot, M. A. van Hove and G. A. Somorjai, Surf. Sci. 127 (1982) 441.Google Scholar
  7. [7]
    A. D. E. Koster and R. A. van Santen, J. Catal. 127 (1991) 141.Google Scholar
  8. [8]
    C. Zhang, Y. Apeloig and R. Hoffman, J. Am. Chem. Soc. 110 (1988) 749.Google Scholar
  9. [9]
    Z. L. Zhang and X. E. Verkios, Catal. Today 21 (1994) 589.Google Scholar
  10. [10]
    C. D. Huang and J. T. Richardson, J. Catal. 51 (1978) 1.Google Scholar
  11. [11]
    D. W. Goodman and M. Kiskinova, Surf. Sci. 105 (1981) L265.Google Scholar
  12. [12]
    T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and T. Mori, Appl. Catal. A144 (1996) 111.Google Scholar
  13. [13]
    A. Diaz, D. R. Acosta, J. A. Odriozola and M. Moutes, J. Phys. Chem. B101 (1997) 1782.Google Scholar
  14. [14]
    Z. Cheng, Q. Wu, J. Li and Q. Zhu, Catal. Today 30 (1996) 147.Google Scholar
  15. [15]
    V. R. Choudhary, B. S. Uphade and A. S. Mamman, Catal. Lett. 32 (1995) 387.Google Scholar
  16. [16]
    R. Lodeng, M. Barre-Chassonnery, M. Fathi, O. A. Rokstad and A. Holmen, Stud. Surf. Sci. Catal. 111 (1997) 561.Google Scholar
  17. [17]
    S. B. Tang, F. L. Qiu and S. J. Lu, Catal. Today 24 (1995) 253.Google Scholar
  18. [18]
    T. Tanaka, Z. Y. Hou, O. Yokota and T. Yashima, Energy (in press).Google Scholar
  19. [19]
    T. Osaki and T. Mori, J. Catal. 204 (2001) 89.Google Scholar
  20. [20]
    K. Walter, O. V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 261.Google Scholar
  21. [21]
    J.-S. Chang, S.-E. Park, J. W. Yoo and J.-N. Park, J. Catal. 195 (2000) 1.Google Scholar
  22. [22]
    J.-S. Chang, S.-E. Park, K. W. Lee and M. J. Choi, Stud. Surf. Sci. Catal. 84 (1994) 1587.Google Scholar
  23. [23]
    G. Bergeret and P. Gallezot, in: Handbook of Heterogeneous Catalysis, Vol. 2, eds. G. Ertl, H. Knozinger and J. Weitkamp (VCH, Weinheim, 1997) p. 439.Google Scholar
  24. [24]
    B. Q. Xu, J. M. Wei, H. Y. Wang, K. Q. Sun and Q. M. Zhu, Catal. Lett. 68 (2001) 217.Google Scholar
  25. [25]
    L. Kepinski, S. Stasinska and T. Borowiecki, Carbon 38 (2000) 1845.Google Scholar
  26. [26]
    W. M. Mullins and B. L. Averbach, Surf. Sci. 29 (1988) 206.Google Scholar
  27. [27]
    S. Kasztelan, J. Grimblot, J. P. Bonnelle, E. Payen, H. Toulhoat and Y. Jacquin, Appl. Catal. A91 (1983) 7.Google Scholar
  28. [28]
    P. Legare and A. Fritsch, Surf. Interf. Anal. 15 (1990) 698.Google Scholar
  29. [29]
    J. F. Moulder, in: Handbook of X-ray Photoelectron Spectroscopy, eds. J. Chastain and R. C. King,Jr. (Physical Electronics Inc., 1992).Google Scholar
  30. [30]
    M. A. Goula, A. A. Lemonidou and A. M. Efstathiou, J. Catal. 161 (1996) 626.Google Scholar
  31. [31]
    Y. Joseph, G. Ketteler, C. Kuhrs, W. Ranke, W. Weiss and R. Schlogl, Phys. Chem. Chem. Phys. 3 (2001) 4141.Google Scholar
  32. [32]
    R. Molina and G. Poncelet, J. Catal. 173 (1998) 257.Google Scholar
  33. [33]
    C. E. Quincoces, A. Diaz, M. Montes, E. N. Ponzi and M. G. Gonzalez, Stud. Surf. Sci. Catal. 139 (2001) 85.Google Scholar
  34. [34]
    Y. G. Chen and J. Ren, Catal. Lett. 29 (1994) 39.Google Scholar
  35. [35]
    Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou and Z. Duan, Appl. Catal. A210 (2001) 45.Google Scholar
  36. [36]
    Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou and Z. Duan, Appl. Catal. A213 (2001) 65.Google Scholar
  37. [37]
    Y. J. Huang, J. P. Schwarz, J. R. Diehl and J. P. Baltrus, Appl. Catal. 36 (1988) 163.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Zhaoyin Hou
    • 1
  • Osamu Yokota
    • 1
  • Takumi Tanaka
    • 1
  • Tatsuaki Yashima
    • 1
  1. 1.Chemical Research GroupResearch Institute of Innovative Technology for the Earth (RITE)Soraku-gun, KyotoJapan

Personalised recommendations