Skip to main content
Log in

SSR2(a) Receptor Expression and Adrenergic/Cholinergic Characteristics in Differentiated SH-SY5Y Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Somatostatin (SS) is an inhibitory regulator of secretory and proliferative responses that activates a group of receptors in the plasma membrane termed SSR1–5. SSR2 is one of the most abundant SSR, which also is expressed in high numbers in many neuroendocrine tumor types. Here, we describe a study of the presence and intracellular localization of the spliced variant SSR2(a) and its endogenous ligand SS in the cultured human neuroblastoma (NB) cell line, SH-SY5Y, by immunohistochemistry and confocal laser scanning. The integral neuronal synaptic vesicle membrane proteins synaptophysin (p38) and SV2 were studied, as well as the IR of catecholaminergic and cholinergic markers. RA treatment was used as an inducer of neuronal-like differentiation in our SH-SY5Y cell line. After the treatment, the presence of catecholaminergic markers (including NPY) decreased while the cholinergic markers (including VIP) increased. p38 and SV2 as well as VIP were shifted into the rather long neuritic processes, indicating efficient intracellular transport. The SSR2(a) protein was significantly increased by RA treatment, but only minor increases in mRNA for this receptor protein could be seen. No subcellular co-localization between p38/SV2 and the cytoplasmic granular receptor material was demonstrated. The SSR2(a) receptor ligand SS was found to be present not only in the cytoplasm but also in the nucleus, and more strongly so after RA treatment. The possible reason for this may be that this peptide, like other small peptides, may serve as transcription factor, or cofactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Reubi, J. C., Schaer, J. C., Markwalder, R., Waser, B., Horisberger, U., and Laissue, J. 1997. Distribution of somatostatin receptors in normal and neoplastic human tissues: Recent advances and potential relevance. Yale J. Biol. Med. 70:471–479.

    Google Scholar 

  2. Patel, Y. C. 1999. Somatostatin and its receptor family. Front Neuroendocrinol. 20:157–198.

    PubMed  Google Scholar 

  3. Raulf, F., Perez, J., Hoyer, D., and Bruns, C. 1994. Differential expression of five somatostatin receptor subtypes, SSTR1-5, in the CNS and peripheral tissue. Digestion 55:46–53.

    PubMed  Google Scholar 

  4. Epelbaum, J., Bertherat, J., Prevost, G., Kordon, C., Meyerhof, W., Wulfsen, I., Richter, D., and Plouin, P. F. 1995. Molecular and pharmacological characterization of somatostatin receptor subtypes in adrenal, extraadrenal, and malignant pheochromocytomas. J. Clin. Endocrinol. Metab. 80:1837–1844.

    PubMed  Google Scholar 

  5. Vanetti, M., Kouba, M., Wang, X., Vogt, G., and Hollt, V. 1992. Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett. 311:290–294.

    PubMed  Google Scholar 

  6. Patel, Y. C., Greenwood, M., Kent, G., Panetta, R., and Srikant, C. B. 1993. Multiple gene transcripts of the somatostatin receptor SSTR2: Tissue selective distribution and cAMP regulation. Biochem. Biophys. Res. Com. 192:288–294.

    PubMed  Google Scholar 

  7. Biedler, J. L., Roffler-Tarlov, S., Schachner, M., and Freedman, L. S. 1978. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38:3751–3757.

    PubMed  Google Scholar 

  8. Biedler, J. L., Helson, L., and Spengler, B. A. 1973. Morphology and growth, tumorgenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33:2643–2652.

    PubMed  Google Scholar 

  9. Goodall, A. R., Danks, K., Walker, J. H., Ball, S. G., and Vaughan, P. F. 1997. Occurrence of two types of secretory vesicles in the human neuroblastoma SH-SY5Y. J. Neurochem. 68:1542–1552.

    PubMed  Google Scholar 

  10. Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L., and Ross, R. A. 1989. Phenotypic diversification in human neuroblastoma cells: Expression of distinct neural crest lineage. Cancer Res. 49:219–225.

    PubMed  Google Scholar 

  11. Spinelli, W. 1982. Effects of phorbol ester tumor promoters and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Cancer Res. 42:5067–5073.

    PubMed  Google Scholar 

  12. Påhlman, S., Ruusala, A. I., Abrahamsson, L., Mattsson, M. E., and Esscher, T. 1984. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: A comparison with phorbolester-induced differentiation. Cell Differ. 14:135–144.

    PubMed  Google Scholar 

  13. Påhlman, S., Mamaeva, S., Meyerson, G., Mattsson, M. E., Bjelfman, C., Ortoft, E., and Hammerling, U. 1990. Human neuroblastoma cells in culture: A model for neuronal cell differentiation and function. Acta Physiol. Scand. (Suppl.) 592:25–37.

    Google Scholar 

  14. Goldstein, M., Fuxe, K., and Hokfelt, T. 1972. Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol. Rev. 24:293–309.

    PubMed  Google Scholar 

  15. Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N., and Edwards, R. H. 1995. Differential expression of two vesicular monoamine transporters. J. Neurosci. 15:6179–6188.

    PubMed  Google Scholar 

  16. Buckley, K. and Kelly, R. B. 1985. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100:1284–1294.

    PubMed  Google Scholar 

  17. Jahn, R., Schiebler, W., Ouimet, C., and Greengard, P. 1985. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA 82:4137–4141.

    PubMed  Google Scholar 

  18. Schindler, M., Sellers, L. A., Humphrey, P. P., and Emson, P. C. 1997. Immunohistochemical localization of the somatostatin SST2(A) receptor in the rat brain and spinal cord. Neuroscience 76:225–240.

    PubMed  Google Scholar 

  19. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  20. Forssell-Aronsson, E. B., Nilsson, O., Bejegard, S. A., Kolby, L., Bernhardt, P., Molne, J., Hashemi, S. H., Wangberg, B., Tisell, L. E., and Ahlman, H. 2000. 111In-DTPA-D-Phel-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J. Nucl. Med. 41:636–642.

    PubMed  Google Scholar 

  21. Agoston, D. V., Colburn, S., Krajniak, K. G., and Waschek, J. A. 1992. Distinct regulation of vasoactive intestinal peptide (VIP) expression at mRNA and peptide levels in human neuroblastoma cells. Neurosci. Lett. 139:213–216.

    PubMed  Google Scholar 

  22. Pence, J. C. and Shorter, N. A. 1992. Autoregulation of neuroblastoma growth by vasoactive intestinal peptide. J. Pediatr. Surg. 27:935–943.

    PubMed  Google Scholar 

  23. LoPresti, P., Poluha, W., Poluha, D. K., Drinkwater, E., and Ross, A. H. 1992. Neuronal differentiation triggered by blocking cell proliferation. Cell Growth. Differ. 3:627–635.

    PubMed  Google Scholar 

  24. Zadina, J. E., Chang, S. L., Ge, L. J., and Kastin, A. J. 1993. Mu opiate receptor down-regulation by morphine and up-regulation by naloxone in SH-SY5Y human neuroblastoma cells. J. Phar-macol. Exp. Ther. 265:254–262.

    Google Scholar 

  25. Hornick, C. A., Anthony, C. T., Hughey, S., Gebhardt, B. M., Espenan, G. D., and Woltering, E. A. 2000. Progressive nuclear translocation of somatostatin analogs. J. Nucl. Med. 41:1256–1263.

    PubMed  Google Scholar 

  26. Raper, S. E., Burwen, S. J., Barker, M. E., and Jones, A. L. 1987. Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 2:1243–1250

    Google Scholar 

  27. Björklund, S. and Kim, Y. J. 1996. Mediator of transcriptional regulation. Trends Biochem. Sci. 21:335–337.

    PubMed  Google Scholar 

  28. Henderson, J. E. 1997. Nuclear targeting of secretory proteins. Mol. Cell Endocrinol. 129:1–5.

    PubMed  Google Scholar 

  29. Mitchell, P. J. and Tjian, R. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.

    PubMed  Google Scholar 

  30. Nilsson, C. L., Murphy, C. M., and Ekman, R. 1997. Isolation and characterization of proteins from human lymphocyte nuclei using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and post-source decay analysis. Rapid Commun. Mass. Spectrom 11:610–612.

    PubMed  Google Scholar 

  31. Blomqvist, M., Bergquist, J., Westman, A., Hakansson, K., Hakansson, P., Fredman, P., and Ekman, R. 1999. Identification of defensins in human lymphocyte nuclei. Eur. J. Biochem. 263:312–318.

    PubMed  Google Scholar 

  32. Ekman, R., Gobom, J., Persson, R., Mecocci, P., and Nilsson, C. L. 2001. Arginine vasopressin in the cytoplasm and nuclear fraction of lymphocytes from healthy donors and patients with depression or schizophrenia. Peptides 22:67–72.

    PubMed  Google Scholar 

  33. Bergquist, J. and Ekman, R. 2001. Future aspects of psychoneuroimmunology: Lymphocytes peptides reflecting psychiatriatic disorders by mass spectrometry. Arch Phys. Biochem. 109:369–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, S.H., Li, JY., Ahlman, H. et al. SSR2(a) Receptor Expression and Adrenergic/Cholinergic Characteristics in Differentiated SH-SY5Y Cells. Neurochem Res 28, 449–460 (2003). https://doi.org/10.1023/A:1022848718109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022848718109

Navigation