Skip to main content
Log in

Early Postdenervation Depolarization Is Controlled by Acetylcholine and Glutamate via Nitric Oxide Regulation of the Chloride Transporter

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Resting non-quantal acetylcholine (ACh) and probably glutamate (Glu) release from nerve endings activates M1- and NMDA receptor-mediated Ca2+ entry into the sarcoplasm with following activation of NOS and production of NO. This is a trophic message from motoneurons, which keeps the Cl transport inactive in the innervated sarcolemma. After denervation, the secretion of ACh and Glu at the neuromuscular junction is eliminated within 3–4 h and the production of NO in the sarcoplasm is lowered. As a result, the Cl influx is probably activated by dephosphorylation of the Cl transporter with subsequent elevation of intracellular Cl concentration. The equilibrium Cl potential becomes more positive and the muscle membrane becomes depolarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albuquerque, E. X., Schuh, F. T., and Kauffman, F. C. 1971. Early membrane depolarization of the fast mammalian muscle after denervation. Pflugers Arch. 328:36–50.

    PubMed  Google Scholar 

  2. Shabunova, I. and Vyskočil, F. 1982. Postdenervation changes of intracellular potassium and sodium measured by ion selective microelectrodes in rat soleus and extensor digitorum longus muscle fibers. Pfluegers Arch. 394:161–164.

    Google Scholar 

  3. Lorkovic, H. and Tomanek, R. J. 1977. Potassium and chloride conductances in normal and denervated rat muscles. Am. J. Physiol. 232:C109–C114.

    PubMed  Google Scholar 

  4. Bray, J. J., Hawken, M. J., Hubbard, J. I., Pockett, S., and Wilson, L. 1976. The membrane potential of rat diaphragm muscle fibers and the effect of denervation. J. Physiol. 255:651–667.

    PubMed  Google Scholar 

  5. Urazaev, A. Kh., Chikin, A. V., Volkov, E. M., Poletaev, G. I., and Khamitov, Kh. S. 1987. Effect of acetylcholine and carbachol on the resting membrane potential in diaphragm muscle of the rat after denervation [in Russian]. Sechenov's Physiol. J. 40:360–362.

    Google Scholar 

  6. Urazaev, A. Kh., Naumenko, N. V., Poletayev, G. I., and Nikolsky, E. E., F. 1998. The effect of glutamate and inhibitors of NMDA receptors on postdenervation decrease of membrane potential in rat diaphragm. Mol. Chem. Neuropathol. 33:163–174.

    PubMed  Google Scholar 

  7. Urazaev, A. Kh., Naumenko, N. V., Nikolsky, E. E., and Vyskočil, F. 1999. The glutamate and carbachol effects on the early post-denervation depolarization in rat diaphragm are directed towards furosemide-sensitive chloride transport. Neurosci. Res. 33:81–86

    PubMed  Google Scholar 

  8. Urazaev, A. Kh., T., Poletaev, G. I., Nikolsky, E. E., and Vyskočil, F. 1995. Muscle NMDA receptors regulate the resting membrane potential through NO-synthase. Physiol. Res. 44:205–208.

    PubMed  Google Scholar 

  9. Urazaev, A. Kh., Naumenko, N. V., Poletayev, G. I., Nikolsky, E. E., and Vyskočil, F. 1996. Nitroprusside decrease the early postdenervation depolarization of diaphragm muscle fibers of the rat. Eur. J. Pharmacol. 316:219–222.

    PubMed  Google Scholar 

  10. Urazaev, A. Kh., Naumenko, N. V., Poletayev, G. I., Nikolsky, E. E., and Vyskočil, F. 1997. Acetylcholine and carbachol prevent muscle depolarization in denervated rat diaphragm. NeuroReport 8:403–406.

    PubMed  Google Scholar 

  11. Urazaev, A. Kh., Naumenko, N. V., Malomough, A., Nikolsky, E. E., and Vyskočil, F. 2000. Carbachol and acetylcholine delay the early postdenervation depolarization of muscle fibers through M1-cholinergic receptors. 2000. Neurosci. Res. 37:255–263.

    PubMed  Google Scholar 

  12. Urazaev, A. Kh., Surovtsev, V. A., Chikin, A. V., Volkov, E. M., Poletaev, G. I., and Khamitov, Kh. S. 1987. Neurotrophic control of transmembrane Cl--pump in mammalian muscle fibers [in Russian]. Neurophysiology, 19:766–771.

    PubMed  Google Scholar 

  13. Betz, W. J., Caldwell, J. H., and Harris, G. L. 1986. Effect of denervation on a steady electric current generated at the end-plate region of rat skeletal muscle. J. Physiol. 373:97–114.

    PubMed  Google Scholar 

  14. Sitdikov, R. F., Urazaev, A., Volkov, E. M., Poletaev, G. I., and Khamitov, Kh. S., 1991. Neurotrophic control of the ionic regulation mechanisms for intracellular water content in muscle fibers of mammals [in Russian]. Neirofiziologiia 23:625–628.

    PubMed  Google Scholar 

  15. Chikin, A. V., Urazaev, A., Volkov, E. M., Poletaev, G. I., and Khamitov, Kh. S. 1987. Effect of disruption of chloride conductance on the development of denervation changes in muscle fiber membranes of the rat [in Russian]. Fiziol. Zh. SSSR 73:51–55.

    PubMed  Google Scholar 

  16. Malomouzh, A. I., Mukhtarov, M. R., Nikolsky, E. E., Vyskočil, F., Lieberman, E. M., and Urazaev, A. Kh. 2003. Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction. J. Neurochem. in press.

  17. Stamler, J. S. and Meissner, G. 2001. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 81:209–237.

    PubMed  Google Scholar 

  18. Grozdanovic, Z. 2001. NO message from muscle. Microscop. Res. Technique 55:148–153.

    Google Scholar 

  19. Gutmann, E. 1976. Neurotrophic relations. Annu. Rev. Physiol. 38:177–216.

    PubMed  Google Scholar 

  20. McArdle, J. J. 1983. Molecular aspects of the trophic influence of nerve on muscle. Prog. Neurobiol. 21:135–138.

    PubMed  Google Scholar 

  21. Nikolsky, E. E., Voronin, V. A., and Oranska, T. I. 1985. Dynamics of quantal and nonquantal acetylcholine release after motor nerve cutting [in Russian]. Dokladi Akademii Nauk SSSR, 281:762–764.

  22. Zemková, H., Vyskočil, F., and Edwards C. 1987. A study on early postdenervation changes of nonquantal and quantal acetylcholine release in the rat diaphragm. Pflueg. Arch. 409:540–546.

    Google Scholar 

  23. Vyskočil, F., Nikolsky, E. E., Zemková H., and Krušek, J. 1995. The role of nonquantal release of acetylcholine in regulation of postsynaptic membrane electrogenesis. J. Physiol. (Paris) 89:157–162.

    Google Scholar 

  24. Katz, B. and Miledi, R. 1977. Transmitter leakage from motor nerve endings. Proc. Royal Soc. Lond. Ser. B 196:59–72.

    Google Scholar 

  25. Vyskočil, F. and Illes, P. 1977. Nonquantal release of transmitter at mouse neuromuscular junction and its dependence on the activity of Na-K-ATPase. Pflueger. Arch. 370:295–297.

    Google Scholar 

  26. Edwards, C., Doležal, V., Tuček, S., Zemková, H., and Vyskočil, F. 1985. Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction? Proc. Natl. Acad. Sci. USA 82:3514–3518.

    PubMed  Google Scholar 

  27. Vizi, E. S. and Vyskočil, F. 1979. Changes in total and quantal release of acetylcholine in the mouse diaphragm during activation and inhibition of membrane ATPase. J. Physiol. 286:1–14.

    PubMed  Google Scholar 

  28. Doležal, V. and Tuček, S. 1983. The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro. J. Physiol. 334:461–474.

    PubMed  Google Scholar 

  29. Nikolsky, E. E., Oranska, T. I., and Vyskočil, F. 1996. Non-quantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery. Exp. Physiol. 81:341–348.

    PubMed  Google Scholar 

  30. Sitdikov, R. F., Urazaev, A., Volkov, E. M., Poletaev, G. I., and Khamitov Kh. S. 1989. Effects of hyperosmolarity and furosemide on resting membrane potentials and skeletal muscle fiber volume in rats [in Russian]. Bull. Eksp. Biol. Med. 108:563–566.

    Google Scholar 

  31. Vyskočil, F., Nikolsky, E. E., and Edwards, C. 1983. An analysis of the mechanisms underlying the nonquantal release of acetylcholine at the mouse neuromuscular junction. J. Neurosci. 9:429–435.

    Google Scholar 

  32. Dlouhá, H., Teisinger, J., and Vyskočil, F., 1979. Activation of membrane Na+/K+-ATPase of mouse skeletal muscle by acetylcholine and its inhibition by alpha-bungarotoxin, curare and atropine. Pflügers Arch. 380:101–104.

    Google Scholar 

  33. Nikolsky, E. E., Zemková, H., Voronin, V. A., and Vyskočil, F. 1994. Participation of nonquantal acetylcholine in release in surplus polarization of the mouse diaphragm fibers at the end-plate zone. J. Physiol. 477:497–502.

    PubMed  Google Scholar 

  34. Vyskočil, F. and Gutmann, E. 1977. Anabolic effect of testosterone on the levator ani muscle of the rat. Pflügers Arch. 371:3–8.

    Google Scholar 

  35. Vincent, S. R. and Hope B. T. 1992. Neurons that say NO. Trends Neurosci. 15:108–113.

    PubMed  Google Scholar 

  36. Mukhtarov, M. R., Vyskočil, F., Urazaev, A. K., and Nikolsky, E. E. 1999. Nonquantal acetylcholine release is increased after nitric oxide synthase inhibition. Physiol. Res. 48:315–317.

    PubMed  Google Scholar 

  37. Mukhtarov, M. R., Urazaev, A. K., Nikolsky, E. E., and Vyskocil, F. 2000. Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm. Eur. J. Neurosci. 12:980–986.

    PubMed  Google Scholar 

  38. Hosey, M. M. 1992. Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J. 6:845–852.

    PubMed  Google Scholar 

  39. Reyes, R. and Jaimovich, E. 1996. Functional muscarinic receptors in cultured skeletal muscle. Arch. Biochem. Biophys. 331:41–47.

    PubMed  Google Scholar 

  40. Vizi, E. S. and Somogyi, G. T. 1989. Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: Link between positive (nicotinic)-and negative (muscarinic)-feedback modulation. Brit. J. Pharmacol. 97:65–70.

    Google Scholar 

  41. Nikolsky, E. E., Bukharaeva, E. A., Strunsky, E. G., and Vyskočil, F. 1991. Depression of miniature endplate potential frequency by acetylcholine and its analogues in frog. Brit. J. Pharmacol. 104:1024–1032.

    Google Scholar 

  42. Wessler, I. 1989. Control of transmitter release from the motor nerve by presynaptic nicotinic and muscarinic autoreceptors. Trends Pharmacol. Sci. 10:110–114.

    PubMed  Google Scholar 

  43. Wessler, I. 1989. Acetylcholine at motor nerves: Storage, release, and presynaptic modulation by autoreceptors and adrenoceptors. Int. Rev. Neurobiol. 34:283–384.

    Google Scholar 

  44. Zemková, H., Vyskočil, F., and Edwards, C. 1990. The effects of nerve terminal activity on nonquantal release of acetylcholine at the mouse neuromuscular junction. J. Physiol. 423:631–640.

    PubMed  Google Scholar 

  45. Meister, B., Arvidsson, U., Zhang, X., Jacobsson, G., Villar, M. J., and Hokfelt, T. 1993. Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurons. Neuroreport 5:337–340.

    PubMed  Google Scholar 

  46. Kerkut, G. A., Shapiro, A., and Walker, R. J. 1967. The transport of C-labelled material from CNS to muscle along a nerve trunk. Comp. Biochem. Physiol. 23:729–748.

    PubMed  Google Scholar 

  47. Waerhaug, O. and Ottersen, O. P. 1993. Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat. Embryol. (Berl.) 188:501–513.

    Google Scholar 

  48. Berger, U. V., Carter, R. E., and Coyle, J. T. 1995. The immunocytochemical localization of N-acetylaspartyl glutamate, its hydrolysing enzyme NAALADase, and the NMDAR-1 receptor at a vertebrate neuromuscular junction. Neuroscience 64:847–850.

    PubMed  Google Scholar 

  49. Davies, J. and Watkins, J. C. 1982. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 235:378–386.

    PubMed  Google Scholar 

  50. Mayer, M. L., Vyklicky, L. J., and Westbrook, G. L. 1989. Modulation of excitatory amino acid receptors by group II B metal cations in cultured mouse hippocampal neurons. J. Physiol. 415:329–350.

    PubMed  Google Scholar 

  51. Westbrook, G. L. and Mayer, M. L. 1987. Micromolar concentration of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643.

    PubMed  Google Scholar 

  52. Legendre, P. and Westbrook, G. L. 1990. The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurons. J. Physiol. 429:429–449.

    PubMed  Google Scholar 

  53. Wong, E. H. F., Kemp, J. A., Priestly, T., Knight, A. R., Woodruff, G. N., and Iversen, L. L. 1986. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83:7104–7108.

    PubMed  Google Scholar 

  54. Schneggenburger, R., Zhou, Z., Konnerth, A., and Neher, E. 1993. Fractional contribution of calcium to the cation current through the glutamate receptor channels. Neuron 11:133–143.

    PubMed  Google Scholar 

  55. Stankovičová, T., Zemková, H., Breier, A., Amler, E., Burkhard, M., and Vyskočil, F. 1995. The effect of calcium and calcium channel blockers on sodium pump. Pfluegers Arch. Eur. J. Physiol. 429:716–721.

    Google Scholar 

  56. Peters, S., Koh, J., and Choi, D. W. 1987. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593.

    PubMed  Google Scholar 

  57. Jahr, C. E. and Stevens, C. F. 1990. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10:3178–3182.

    PubMed  Google Scholar 

  58. Hahn, J. S., Aizenmann, E., and Lipton, S. A. 1988. Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: Toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Proc. Natl. Acad. Sci. USA 85:6556–6560.

    PubMed  Google Scholar 

  59. Amador, M. and Dani, J. A. 1991. MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse 7:207–215.

    PubMed  Google Scholar 

  60. Howell, G. A., Welch, M. G., and Frederickson, C. J. 1984. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738.

    PubMed  Google Scholar 

  61. Assaf, S. Y. and Chung, S.-H. 1984. Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736.

    PubMed  Google Scholar 

  62. Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, E. J., Froelick, G. L., Zambrowicz, B. P., Brinster, R. L., and Palmiter, R. D. 1994. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci. 14:5844–5857.

    PubMed  Google Scholar 

  63. Johnson, J. W. and Ascher, P. 1987. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531.

    PubMed  Google Scholar 

  64. Wood, E. R., Bussey, T. J., and Philips, A. G. 1994. A glycine antagonist 7-chlorkynuretic acid attenuates ischemia-induced learning deficits. Neuroreport 4:151–154.

    Google Scholar 

  65. Moncada, S., Palmer, R. M. J., and Higgs, E. A. 1991. Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:1709–1715.

    Google Scholar 

  66. Bohme, G. A., Bon, C., Stutzmann, J. M., Doble, A., and Blanchard, J. 1991. Possible involvement of nitric oxide in long-term potentiation, Eur. J. Pharmacol. 199:379–381.

    PubMed  Google Scholar 

  67. Antonov, S. M. and Magazanik, L. G. 1988. Intense nonquantal release of glutamate in an insect neuromuscular junction. Neurosci. Lett. 93:204–208.

    PubMed  Google Scholar 

  68. Kobzik, L., Reid, M. B., Bredt, D. S., and Stamler, J. S. 1994. Nitric oxide in skeletal muscle. Nature, 372:545–548.

    Google Scholar 

  69. Kilpatrick, E. V. and Cocks, T. M. 1994. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br. J. Pharmacol. 112:557–565.

    PubMed  Google Scholar 

  70. Miyoshi, H. and Nakaya, Y. 1994. Endotoxin-induced non-endothelial nitric oxide activates the Ca(2+)-activated K+ channel in cultured vascular smooth muscle cells. J. Mol. Cell Cardiol. 26:1487–1495.

    PubMed  Google Scholar 

  71. Böhme, G. A, Bon, C., Stutzmann, J. M., Doble, A., and Blanchard, J. C. 1991. Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 199:379–381.

    PubMed  Google Scholar 

  72. Poletaev G. I. 1970. Mechanism of imidazole action on frog neuromuscular junctions [in Russia]. Sechenov's Physiol. J. 56:64–67.

    Google Scholar 

  73. Kohen, R., Yamamoto, Y., Cundy, K. C., and Ames, B. N. 1988. Antioxidant activity of carnosine homocarnosine and anserine present in muscle and brain. PNAS 85:3175–3179

    PubMed  Google Scholar 

  74. Ciani, S. and Edwards, C. 1963. The effect of acetylcholine on neuromuscular transmission in the frog. Pharmacol. Exp. Ther. 142:21–29.

    Google Scholar 

  75. Bray, J. J., Forrest, J. W., and Hubbard, J. I. 1982. Evidence for the role of nonquantal acetylcholine in the maintenance of the membrane potential of rat skeletal muscle. J. Physiol. F326:285–296.

    Google Scholar 

  76. Grozdanovich, Z. and Grossrau, R. 1998. Co-localization of nitric oxide synthase I (NOS I) and NMDA receptor subunit 1 (NMDAR-1) at the neuromuscular junction in rat and mouse skeletal muscle. Cell Tissue Res. 291:57–63.

    PubMed  Google Scholar 

  77. Mukhtarov, M. R., Urazaev, A. K., Nikolski, E. E., and Vyskočcil, F. 2001. Modulation by nitric oxide (NO) of the intensity of nonquantal mediator secretion in neuromuscular junctions in rats. Neurosci. Behav. Physiol. 31:451–455.

    PubMed  Google Scholar 

  78. Galkin, A. V., Giniatullin, R. A., Mukhtarov, M. R., Švandová, I., Grishin, S. N., and Vyskočil, F. 2001. ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction. Eur. J. Neurosci. 13:2047–2053.

    PubMed  Google Scholar 

  79. Dulhunty, A. F. 1978. The dependence of membrane potential on extracellular chloride concentrations in mammalian muscle fibers. J. Physiol. 276:67–82.

    PubMed  Google Scholar 

  80. Tews, D. S. 2001. Role of nitric oxide and nitric oxide synthases in experimental models of denervation and reinnervation. Microsc. Res. Tech. 55:181–186.

    PubMed  Google Scholar 

  81. Švandová, I., Vyskočil, F., and Ujec, E. 2001. Nitric oxide synthase inhibition partially imitates postdenervation tetrodotoxin resistance and anodal break excitation in innervated rat muscles. Physiol. Res. 50:P29.

    Google Scholar 

  82. Melzer, W., Schneider, M. F., Simon, B. J., and Szucs, G. 1986. Intramembrane charge movement and calcium release in frog skeletal muscle. J. Physiol. 373:481–511.

    PubMed  Google Scholar 

  83. Bray, J. J. and Harris, A. J. 1975. Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin. J. Physiol. 253:53–77.

    PubMed  Google Scholar 

  84. Adámek, S., Schutzner, J., Seidle, Z, Smat, V., Pit`ha, J. 1996. Correlation of computer tomography findings with surgical findings in patients with myasthenia gravis. Rozhl. Chir. 75:237–239.

    PubMed  Google Scholar 

  85. Schutzner, J., Smat, V., Patko, P., Adámek, S., Sláma, J. 1999. Surgical therapy of thymomas. Sb. Lek. 100:27–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyskočil, F. Early Postdenervation Depolarization Is Controlled by Acetylcholine and Glutamate via Nitric Oxide Regulation of the Chloride Transporter. Neurochem Res 28, 575–585 (2003). https://doi.org/10.1023/A:1022833709448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022833709448

Navigation