Skip to main content
Log in

Exploring the Regulation of the Expression of ChAT and VAChT Genes in NG108-15 Cells: Implication of PKA and PI3K Signaling Pathways

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Involvement of different protein kinases regulated by cAMP and implication of muscarinic receptors in the regulation of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) mRNA levels and ChAT activity has been studied in NG108-15 cells. Dibutyryl cAMP enhanced both ChAT and VAChT mRNA levels and stimulated ChAT activity. Muscarinic stimulation or inhibition did not change ChAT activity or the receptor subtype mRNA pattern. MEK1/2 did not affect the regulation of ChAT and VAChT mRNA levels. However, PKA plays a major role in regulating ChAT and VAChT mRNA levels, because H89 decreased both. Strikingly, inhibition of PI3K by LY294002 had two opposite effects: ChAT mRNA level was decreased and VAChT mRNA level was increased. Such a result consolidates the observation that ChAT and VAChT genes, despite their unusual organization in a single “cholinergic locus,” can be differentially or synergistically regulated, depending on the activated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alfonso, A., Grundahl, K., Duerr, J. S., Hahn, H. P., and Rand, J. P. 1993. The Caenorhabditis elegans unc17 gene: A putative vesicular acetylcholine transporter. Nature. 261:617–619.

    Google Scholar 

  2. Béjanin, S., Cervini, R., Mallet, J., and Berrard, S. A. 1994. Unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J. Biol. Chem. 269:21944–21947.

    PubMed  Google Scholar 

  3. Erickson, J. D., Varoqui, H., Schäfer, M. K. H., Modi, W., Diebler, M.-F., Weihe, E., Rand, J., Eiden, L. E., Bonner, T. I., and Usdin, T. B. 1994. Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. J. Biol. Chem., 269:21929–21932.

    PubMed  Google Scholar 

  4. Kitamoto, T., Wang, W., and Salvaterra, P. M. 1998. Structure and organization of the Drosophila cholinergic locus. J. Biol. Chem. 273:2706–2713.

    PubMed  Google Scholar 

  5. Naciff, J. M., Misawa, H., and Dedman, J. R. 1997. Molecular characterization of the mouse vesicular acetylcholine transporter gene. Neuroreport 8:3467–3473.

    PubMed  Google Scholar 

  6. Cervini, R., Houhou, L., Pradat, P.-F., Béjanin, S., Mallet, J., and Berrard S. 1995. Specific vesicular acetylcholine transporter promoter lie within the first intron of the rat choline acetyltransferase gene. J. Biol. Chem. 270:24654–24657.

    PubMed  Google Scholar 

  7. Eiden, L. E. 1998. The cholinergic gene locus. J. Neurochem. 70:2227–2240.

    PubMed  Google Scholar 

  8. De Gois, S., Houhou, L., Oda, Y., Corbex, M., Pajak, F., Thévenot, E., Vodjdani, G., Mallet, J., and Berrard, S. 2000. Is RE1:NRSE a common cis-regulatory sequence for ChAT and VAChT genes? J. Biol. Chem. 275:36683–36690.

    PubMed  Google Scholar 

  9. Berrard, S., Varoqui, H., Cervini, R., Israël, M., Mallet, J., and Diebler, M.-F. 1995. Coregulation of two embedded gene products: Choline acetyltransferase and the vesicular acetylcholine transporter. J. Neurochem. 65:939–942.

    PubMed  Google Scholar 

  10. Berse, B. and Blusztajn, J. K. 1995. Coordinated upregulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor alpha, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J. Biol. Chem. 270:22101–22104.

    PubMed  Google Scholar 

  11. Berse, B. and Blusztajn, J. K. 1997. Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 110:175–179.

    Google Scholar 

  12. Misawa, H., Takahashi, R., and Deguchi, T. 1995. Coordinate expression of vesicular acetylcholine transporter and choline acetyltranferase in sympathetic superior cervical neurones. Neuroreport 6:965–968.

    PubMed  Google Scholar 

  13. Holler, T., Berse, B., Cermak, J. M., Diebler, M.-F., and Blusztajn, J. K. 1996. Differences in the developmental expression of the vesicular acetylcholine transporter and choline acetyltransferase in the rat brain. Neurosci. Lett. 212:107–110.

    PubMed  Google Scholar 

  14. Tian, X., Sun, X., and Suskiw, J. B. 1996. Developmental age-dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal septum by nerve growth factor. Neurosci. Lett. 209:134–136.

    PubMed  Google Scholar 

  15. Malik, M. A., Greenwood, C. E., Blusztajn, J. C., Berse, B. 2000. Cholinergic differentiation triggered by blocking cell proliferation and treatment with all-trans-retinoic acid. Brain Res. 874:178–185.

    PubMed  Google Scholar 

  16. Dolezal, V., Castell, X., Tomasi, M., Diebler, M. F. 2001. Stimuli that induce a cholinergic neuronal phenotype of NG108-15 cells upregulate ChAT and VAChT mRNAs but fail to increase VAChT protein. Brain Res. Bull. 54:363–374.

    PubMed  Google Scholar 

  17. Jaco, A. D., Ajmone-Cat, M. A., Baldelli, P., Carbone, E., Augusti-Tocco, G., Biagioni, S. 2000. Modulation of acetylcholinesterase and voltage-gated Na(+) channels in choline acetyltransferase-transfected neuroblastoma clones. J. Neurochem. 75(3):1123–1131.

    PubMed  Google Scholar 

  18. Caulfield, M. P. 1993. Muscarinic receptors: Characterization, coupling and function. Pharmacol. Ther. 58:319–379.

    PubMed  Google Scholar 

  19. Rouzaire-Dubois, B. and Dubois, J. M. 1990. Tamoxifen blocks both proliferation and voltage-dependent K+ channels of neuroblastoma cells. Cell Signal 2:387–393.

    PubMed  Google Scholar 

  20. Varoqui, H., Meunier, F.-M., Meunier, F. A., Molgo, J., Berrard, S., Cervini, R., Mallet, J., Israël, M., and Diebler, M.-F. 1996. Expression of the vesicular acetylcholine transporter in mammalian cells. Prog. Brain Res. 109:83–95.

    PubMed  Google Scholar 

  21. Fonnum, F. 1969. Isolation of choline esters from aqueous solutions by extraction with sodium tetraphenylboron in organic solvents. Biochem. J. 113:291–298.

    PubMed  Google Scholar 

  22. Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  23. Olianas, M. C., Ingianni, A., Maullu, C., Adem, A., Karlsson, E., Onali, P. 1999. Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J. Pharmacol. Exp. Ther. 288:164–170.

    PubMed  Google Scholar 

  24. Castell, X., Diebler, M. F., Tomasi, M., Bigari, C., De Gois, S., Berrard, S., Mallet, J., Israël, M., Dolezal, V. 2002. More than one way to toy with ChAT and VAChT. J. Physiol. (Paris) 96: 61–72.

    Google Scholar 

  25. Haubrich, D. R., Gerber, N. H., Pfuelger, A. B., and Pouch, W. J. 1981. Central cholinergic synapses: Precursors for acetylcholine synthesis—Choline availability and the synthesis of acetylcholine. Pages 425–441, in Pepeu, G. and Ladinsky, H. (eds.), Cholinergic Mechanisms, Plenum Press, New York and London.

    Google Scholar 

  26. Pahud, G., Bontron, S., and Eder-Colli, L. 2001. Modulation of choline acetyltransferase synthesis by okadaïc acid, a phosphatase inhibitor, and KN-62, a CaMkinase inhibitor, in NS-20Y neuroblastoma. Neurochem. Int. 38:75–82.

    PubMed  Google Scholar 

  27. Shimojo, M., Wu, D., and Hersh, L. B. 1998. The cholinergic gene locus is coordinately regulated by protein kinase A II in PC12 cells. J. Neurochem. 71:1118–1126.

    PubMed  Google Scholar 

  28. Wang, L., Liu, F., and Adamo, M. L. 2001. Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J. Biol. Chem. 276: 37242–37249.

    PubMed  Google Scholar 

  29. Sanhez, G., Sayas, C. L., Lim, F., Diaz-Nido, J., Avila, J., and Wandosell, F. 2001. The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J. Neurochem. 78:468–481.

    PubMed  Google Scholar 

  30. Leevers, S. J., Vanhaesebroeck, B., and Waterfield, M. D. 1999. Signalling through phosphoinositide-3-kinases: The lipids take center stage. Curr. Opin. Cell Biol. 11:219–225.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castell, X., Cheviron, N., Barnier, JV. et al. Exploring the Regulation of the Expression of ChAT and VAChT Genes in NG108-15 Cells: Implication of PKA and PI3K Signaling Pathways. Neurochem Res 28, 557–564 (2003). https://doi.org/10.1023/A:1022829608540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022829608540

Navigation