Skip to main content
Log in

Trimerization Domain of the Collagen Tail of Acetylcholinesterase

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the collagen-tailed forms of cholinesterases, each subunit of a specific triple helical collagen, ColQ, may be attached through a proline-rich domain (PRAD) situated in its N-terminal noncollagenous region, to tetramers of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). This heteromeric assembly ensures the functional anchoring of AChE in extracellulare matrices, for example, at the neuromuscular junction. In this study, we analyzed the influence of deletions in the noncollagenous C-terminal region of ColQ on its capacity to form a triple helix. We show that an 80-residue segment located downstream of the collagenous regions contains the trimerization domain, that it can form trimers without the collagenous regions, and that a pair of cysteines located at the N-boundary of this domain facilitates oligomerization, although it is not absolutely required. We further show that AChE subunits can associate with nonhelical collagen ColQ monomers, forming ColQ-associated tetramers (G4-Q), which are secreted or are anchored at the cell surface when the C-terminal domain of ColQ is replaced by a GPI-addition signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Massoulié, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F. M. 1993. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41:31–91.

    PubMed  Google Scholar 

  2. Massoulié, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N., and Simon, S. 1998. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J. Physiol. (Paris) 92:183–190.

    Google Scholar 

  3. Massoulié, J. 2002. The origin of the molecular diversity and functional anchoring of cholinesterases. NeuroSignals 11:130–143.

    PubMed  Google Scholar 

  4. Bon, S., Rosenberry, T. L., and Massoulié, J. 1991. Amphiphilic, glycophosphatidylinositol-specific phospholipase C (PI-PLC)-insensitive monomers and dimers of acetylcholinesterase. Cell. Mol. Neurobiol. 11:157–172.

    PubMed  Google Scholar 

  5. Bon, S. and Massoulié, J. 1997. Quaternary associations of acetylcholinesterase: I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J. Biol. Chem. 272:3007–3015.

    PubMed  Google Scholar 

  6. Krejci, E., Coussen, F., Duval, N., Chatel, J. M., Legay, C., Puype, M., Vandekerckhove, J., Cartaud, J., Bon, S., and Massoulié, J. 1991. Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: Co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 10:1285–1293.

    PubMed  Google Scholar 

  7. Krejci, E., Thomine, S., Boschetti, N., Legay, C., Sketelj, J., and Massoulié, J. 1997. The mammalian gene of acetylcholinesterase-associated collagen. J. Biol. Chem. 272:22840–22847.

    PubMed  Google Scholar 

  8. Feng, G., Krejci, E., Molgo, J., Cunningham, J. M., Massoulié, J., and Sanes, J. R. 1999. Genetic analysis of collagen Q: Roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J. Cell Biol. 144:1349–1360.

    PubMed  Google Scholar 

  9. Perrier, A. L., Massoulié, J., and Krejci, E. 2002. PRiMA, the membrane anchor of acetylcholinesterase in brain. Neuron 33:275–285.

    PubMed  Google Scholar 

  10. Hall, Z. W. 1973. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J. Neurol. 4:343–361.

    Google Scholar 

  11. Gennari, K., Brunner, J., and Brodbeck, U. 1987. Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: Subunit composition and number of active sites. J. Neurochem. 49:12–18.

    PubMed  Google Scholar 

  12. Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. 1987. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262:4441–4444.

    PubMed  Google Scholar 

  13. Bon, S., Coussen, F., and Massoulié, J. 1997. Quaternary associations of acetylcholinesterase: II. The polyproline attachment domain of the collagen tail. J. Biol. Chem. 272:3016–3021.

    PubMed  Google Scholar 

  14. Simon, S., Krejci, E., and Massoulié, J. 1998. A four-to-one association between peptide motifs: Four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 17:6178–6187.

    PubMed  Google Scholar 

  15. Engel, J. and Prockop, D. J. 1991. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu. Rev. Biophys. Biophys. Chem. 20:137–152.

    PubMed  Google Scholar 

  16. McLaughlin, S. H. and Bulleid, N. J. 1998. Molecular recognition in procollagen chain assembly. Matrix Biol. 16:369–377.

    PubMed  Google Scholar 

  17. Duval, N., Krejci, E., Grassi, J., Coussen, F., Massoulié, J., and Bon, S. 1992. Molecular architecture of acetylcholinesterase collagen-tailed forms: Construction of a glycolipid-tailed tetramer. EMBO J. 11:3255–3261.

    PubMed  Google Scholar 

  18. Legay, C., Bon, S., Vernier, P., Coussen, F., and Massoulié, J. 1993. Cloning and expression of a rat acetylcholinesterase subunit: Generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J. Neurochem. 60:337–346.

    PubMed  Google Scholar 

  19. Mizushima, S. and Nagata, S. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.

  20. Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M., and Moore, D. D. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell Biol. 6:3173–3179.

    PubMed  Google Scholar 

  21. Bon, S. and Massoulié, J. 1978. Collagenase sensitivity and aggregation properties of Electrophorus acetylcholinesterase. Eur. J. Biochem. 89:89–94.

    PubMed  Google Scholar 

  22. Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    PubMed  Google Scholar 

  23. Bon, S., Toutant, J. P., Méflah, K., and Massoulié, J. 1988. Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: II. Electrophoretic variants and phosphatidylinositol phospholipase C-sensitive and-insensitive forms. J. Neurochem. 51:786–794.

    PubMed  Google Scholar 

  24. Karnovsky, M. J. and Roots, L. 1964. A direct-coloring thiocholine method for cholinesterases. J. Histochem. Cytochem. 12:219–222.

    PubMed  Google Scholar 

  25. Rost, B. 1996. PHD: Predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266:525–539.

    PubMed  Google Scholar 

  26. Bon, S., Cartaud, J., and Massoulié, J. 1978. Dumbbell-shaped associations of tailed Electrophorus acetylcholinesterase molecules. Mol. Biol. Rep. 4:61–63.

    PubMed  Google Scholar 

  27. Beck, K., Boswell, B. A., Ridgway, C. C., and Bachinger, H. P. 1996. Triple helix formation of procollagen type I can occur at the rough endoplasmic reticulum membrane. J. Biol. Chem. 271:21566–21573.

    PubMed  Google Scholar 

  28. Bulleid, N. J., Dalley, J. A., and Lees, J. F. 1997. The C-propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis. EMBO J. 16:6694–6701.

    PubMed  Google Scholar 

  29. Sikorav, J. L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B., and Massoulié, J. 1988. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ: Primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO J. 7:2983–2993.

    PubMed  Google Scholar 

  30. Duval, N., Massoulié, J., and Bon, S. 1992. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J. Cell Biol. 118:641–653.

    PubMed  Google Scholar 

  31. Coussen, F., Ayon, A., Le Goff, A., Leroy, J., Massoulié, J., and Bon, S. 2001. Addition of a glycophosphatidylinositol to acetylcholinesterase: Processing, degradation, and secretion. J. Biol. Chem. 276:27881–27892.

    PubMed  Google Scholar 

  32. Kristensen, T., Oxvig, C., Sand, O., Moller, N. P., and Sottrup-Jensen, L. 1994. Amino acid sequence of human pregnancy-associated plasma protein-A derived from cloned cDNA. Biochemistry 33:1592–1598.

    PubMed  Google Scholar 

  33. Corpet, F., Gouzy, J., and Kahn, D. 1998. The ProDom database of protein domain families. Nucleic Acids Res. 26:323–326.

    PubMed  Google Scholar 

  34. Lawrence, J. B., Oxvig, C., Overgaard, M. T., Sottrup-Jensen, L., Gleich, G. J., Hays, L. G., Yates, J. R., 3rd, and Conover, C. A. 1999. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc. Natl. Acad. Sci. USA 96:3149–3153.

    PubMed  Google Scholar 

  35. Overgaard, M. T., Haaning, J., Boldt, H. B., Olsen, I. M., Laursen, L. S., Christiansen, M., Gleich, G. J., Sottrup-Jensen, L., Conover, C. A., and Oxvig, C. 2000. Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor. J. Biol. Chem. 275:31128–31133.

    PubMed  Google Scholar 

  36. Mechling, D. E., Gambee, J. E., Morris, N. P., Sakai, L. Y., Keene, D. R., Mayne, R., and Bächinger, H. P. 1996. Type IX collagen NC1 domain peptides can trimerize in vitro without forming a triple helix. J. Biol. Chem. 271:13781-13785.

    PubMed  Google Scholar 

  37. Brass, A., Kadler, K. E., Thomas, J. T., Grant, M. E., and Boot-Handford, R. P. 1992. The fibrillar collagens, collagen VIII, collagen X and the C1q complement proteins share a similar domain in their C-terminal non-collagenous regions. FEBS Lett. 303:126–128.

    PubMed  Google Scholar 

  38. Hoppe, H. J., Barlow, P. N., and Reid, K. B. 1994. A parallel three stranded alpha-helical bundle at the nucleation site of collagen triple-helix formation. FEBS Lett. 344:191–195.

    PubMed  Google Scholar 

  39. Moradi-Ameli, M., Deleage, G., Geourjon, C., and van der Rest, M. 1994. Common topology within a non-collagenous domain of several different collagen types. Matrix Biol. 14:233–239.

    PubMed  Google Scholar 

  40. Lesage, A., Penin, F., Geourjon, C., Marion, D., and van der Rest, M. 1996. Trimeric assembly and three-dimensional structure model of the FACIT collagen COL1-NC1 junction from CD and NMR analysis. Biochemistry. 35:9647–9660.

    PubMed  Google Scholar 

  41. Kao, W. W., Prockop, D. J., and Berg, R. A. 1979. Kinetics for the secretion of nonhelical procollagen by freshly isolated tendon cells. J. Biol. Chem. 254:2234–2243.

    PubMed  Google Scholar 

  42. Thakker-Varia, S., Anderson, D. W., Kuivaniemi, H., Tromp, G., Shin, H. G. van der Rest, M., Glorieux, F. H., Ala-Kokko, L., and Stolle, C. A. 1995. Aberrant splicing of the type III procollagen mRNA leads to intracellular degradation of the protein in a patient with Ehlers-Danlos type IV. Hum. Mutat. 6:116–125.

    PubMed  Google Scholar 

  43. Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O., and Bateman, J. F. 1995. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J. Biol. Chem. 270:8642–8649.

    PubMed  Google Scholar 

  44. Walmsley, A. R., Batten, M. R., Lad, U., and Bulleid, N. J. 1999. Intracellular retention of procollagen within the endoplasmic reticulum is mediated by prolyl 4-hydroxylase. J. Biol. Chem. 274:14884–14892.

    PubMed  Google Scholar 

  45. Bon, S., Cartaud, J., and Massoulié, J. 1978. The dependence of acetylcholinesterase aggregation at low ionic strength upon a polyanionic component. Eur. J. Biochem. 85:1–14.

    PubMed  Google Scholar 

  46. Deprez, P. and Inestrosa, N. C. 1995. Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J. Biol. Chem. 270:11043–11046.

    PubMed  Google Scholar 

  47. Deprez, P., Doss-Pepe, E., Brodsky, B., and Inestrosa, N. C. 2000. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochem. J. 350:283–290.

    PubMed  Google Scholar 

  48. Kuivaniemi, H., Tromp, G., and Prockop, D. J. 1997. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9:300–315.

    PubMed  Google Scholar 

  49. Ohno, K., Brengman, J., Tsujino, A., and Engel, A. G. 1998. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like (ColQ) of the asymmetric enzyme. Proc. Natl. Acad. Sci. USA 95:9654–9659.

    PubMed  Google Scholar 

  50. Ohno, K., Brengman, J. M., Felice, K. J., Cornblath, D. R., and Engel, A. G. 1999. Congenital endplate acetylcholinesterase deficiency caused by a nonsense mutation and an A→G splicedonor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): How does G at position +3 result in aberrant splicing? Am. J. Hum. Genet. 65:635–644.

    PubMed  Google Scholar 

  51. Ohno, K., Engel, A. G., Brengman, J. M., Shen, X. M., Heidenreich, F., Vincent, A., Milone, M., Tan, E., Demirci, M., Walsh, P., Nakano, S., and Akiguchi, I. 2000. The spectrum of mutations causing endplate acetylcholinesterase deficiency. Ann. Neurol. 47:162–170.

    PubMed  Google Scholar 

  52. Shapira, Y. A., Sadeh, M. E., Bergtraum, M. P., Tsujino, A., Ohno, K., Shen, X. M., Brengman, J., Edwardson, S., Matoth, I., and Engel, A. G. 2002. Three novel COLQ mutations and variation of phenotypic expressivity due to G240X. Neurology 58:603–609.

    PubMed  Google Scholar 

  53. Ohno, K. and Engel, A. G. 2002. Congenital myasthenic syndromes: Genetic defects of the neuromuscular junction. Curr. Neurol. Neurosci. Rep. 2:78–88.

    PubMed  Google Scholar 

  54. Rossi, S. G. and Rotundo, R. L. 1996. Transient interactions between collagen-tailed acetylcholinesterase and sulfated proteoglycans prior to immobilization in the extracellular matrix. J. Biol. Chem. 271:1979–1987.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Massoulié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bon, S., Ayon, A., Leroy, J. et al. Trimerization Domain of the Collagen Tail of Acetylcholinesterase. Neurochem Res 28, 523–535 (2003). https://doi.org/10.1023/A:1022821306722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022821306722

Navigation