Skip to main content
Log in

Fetch and Footprint of Turbulent Fluxes over Vegetative Stands with Elevated Sources

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this study, Raupach's localized near-field (LNF)theory is combined with appropriate parameterizations ofthe turbulence inside a canopy to investigate how airstability and source configuration influence the fluxfootprint and flux adjustment with fetch in theroughness sublayer. The model equations are solvednumerically. The flux footprint from the LNF predictionis in general more contracted than the prediction basedon the inertial sublayer similarity functions. Invery unstable conditions, the near-field effect causes thefootprint of the elevated canopy source to locatefurther upwind than that of the ground-level source, andthe combined footprint can become negative in situationswhere the two sources are of opposite sign. The fluxfootprint and flux adjustment with fetch in theroughness sublayer are sensitive to source configurationand the parameters specifying wind speed and theLagrangian time scale inside the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldocchi, D.: 1997, 'Flux Footprints within and over Forest Canopies', Boundary-Layer Meteorol. 85, 273-292.

    Google Scholar 

  • Baldocchi, D. and Harley, P. C.: 1995, 'Scaling Carbon Dioxide and Water Vapor Exchange from Leaf to Canopy in a Deciduous Forest. 2. Model Testing and Application', Plant Cell Environ. 18, 1157-1173.

    Google Scholar 

  • Dyer, A. J.: 1963, 'The Adjustment of Profiles and Eddy Fluxes', Quart. J. Roy. Meteorol. Soc. 89, 276-280.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1992, 'Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface-Layer', Boundary-Layer Meteorol. 59, 279-296.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1994, 'How Far Is Far Enough-The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes', J. Atmos. Oceanic Tech. 11, 1018-1025.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Katul, G. G., Leuning, R., Kim, J., Denmead, O. T., Miyata, A., and Harazono, Y.: 2001, 'Estimating CO2 Source/Sink Distributions within a Rice Canopy Using Higher-Order Closure Model', Boundary-Layer Meteorol. 98, 103-125.

    Google Scholar 

  • Leclerc, M. Y. and Thurtell, G. W.: 1990, 'Footprint Prediction of Scalar Fluxes Using a Markovian Analysis', Boundary-Layer Meteorol. 52, 247-258.

    Google Scholar 

  • Leclerc, M. Y., Shen, S. H., and Lamb, B.: 1997, 'Observations and Large-Eddy Simulation of Modeling of Footprints in the Lower Convective Boundary Layer', J. Geophys. Res. 102, 9323-9334.

    Google Scholar 

  • Lee, X.: 1997, 'Gravity Waves in a Forest: A Linear Analysis', J. Atmos. Sci. 54, 2574-2585.

    Google Scholar 

  • Lee, X.: 2002, 'Forest-Atmosphere Exchanges in Non-Ideal Conditions: The Role of Horizontal Eddy Flux and its Divergence', in J. Grace et al. (ed.), Forest at the Land-Atmosphere Interface, CAB International, in press.

  • Lee, X., Shaw, R. H., and Black, T. A.: 1994, 'Modelling the Effect of Barometric Pressure Gradient on the Mean Flow within Forests', Agric. For. Meteorol. 68, 201-212.

    Google Scholar 

  • Leuning, R.: 2000. 'Estimation of Scalar Source/Sink Distributions in Plant Canopies Using Lagrangian Dispersion Analysis: Corrections for Atmospheric Stability and Comparison with a Multilayer Canopy Model', Boundary-Layer Meteorol. 96, 293-314.

    Google Scholar 

  • Ohtaki, E.: 1985, 'On the Similarity in Atmospheric Fluctuations of Carbon Dioxide, Water Vapor and Temperature over Vegetated Fields', Boundary-Layer Meteorol. 32, 25-37.

    Google Scholar 

  • Patankar, S. V.: 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Corp.,Washington, DC, McGraw-Hill, New York, NY, 197 pp.

    Google Scholar 

  • Philip, J. R.: 1959, 'The Theory of Local Advection: I', J. Meteorol. 16, 535-547.

    Google Scholar 

  • Rannik, Ñ., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K. K., Markkanen, T., and Vesala, T.: 2000, 'Footprint Analysis for Measurements over a Heterogeneous Forest', Boundary-Layer Meteorol. 97, 137-166.

    Google Scholar 

  • Raupach, M. R.: 1989, 'A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 115, 609-632.

    Google Scholar 

  • Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, 'Experiments on Scalar Dispersion within a Model Plant Canopy. Part I: The Turbulence Structure', Boundary-Layer Meteorol. 35, 21-52.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy', Boundary-Layer Meteorol. 78, 351-382.

    Google Scholar 

  • Schmid, H. P.: 2002, 'Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective', Agric. For. Meteorol., in press.

  • Shaw, R. H., den Hartog, G., and Neumann, H. H.: 1988, 'Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest', Boundary-Layer Meteorol. 45, 391-409.

    Google Scholar 

  • Simpson, I. J., Thurtell, G.W., Neumann, H. H., and den Hartog, G.: 1998, 'The Validity of Similarity Theory in the Roughness Sublayer above Forests', Boundary-Layer Meteorol. 87, 69-99.

    Google Scholar 

  • Warland, J. and G. E. Thurtell: 2000, 'A Lagrangian Solution to the Relationship between a Distributed Source and Concentration Profile', Boundary-Layer Meteorol. 96, 453-471.

    Google Scholar 

  • Wilson, J. D. and Swaters, G. E.: 1991, 'The Sources Area Influencing a Measurement in the Planetary Boundary-Layer-The Footprint and Distribution of Contact Distance', Boundary-Layer Meteorol. 55, 25-46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, X. Fetch and Footprint of Turbulent Fluxes over Vegetative Stands with Elevated Sources. Boundary-Layer Meteorology 107, 561–579 (2003). https://doi.org/10.1023/A:1022819907480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022819907480

Navigation