Skip to main content
Log in

High-Affinity Choline Transporter

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+- and Cl-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tuček, S. 1985. Regulation of acetylcholine synthesis in the brain. J. Neurochem. 44:11–24.

    PubMed  Google Scholar 

  2. Kuhar, M. J. and Murrin, L. C. 1978. Sodium-dependent, high-affinity choline uptake. J. Neurochem. 30:15–21.

    PubMed  Google Scholar 

  3. Okuda, T., Haga, T., Kanai, Y., Endou, H. Ishihara, T, and Katsura, I. 2000. Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 3:120–125.

    PubMed  Google Scholar 

  4. Wang, Y., Cao, Z., Newkirk, R.F., Ivy, M.T., and Townsel, J.G. 2001. Molecular cloning of a cDNA for a putative choline co-transporter from Limulus CNS. Gene 268:123–131.

    PubMed  Google Scholar 

  5. Guermonprez, L., O'Regan, S., Meunier, F.M., and Morot Gaudry-Talarmain, Y., 2002. The neuronal choline transporter CHT1 is regulated by immunosuppressor-sensitive pathways. J. Neurochem. In press.

  6. Apparsundaram, S., Ferguson, S. M., and Blakely, R. D. 2001. Molecular cloning and characterization of a murine hemicholinium-3-sensitive choline transporter. Biochem. Soc. Trans. 29: 711–716.

    PubMed  Google Scholar 

  7. Apparsundaram, S., Ferguson, S.M., George, A.L., Jr., and Blakely, R. D. 2000. Molecular cloning of a human hemicholinium-3-sensitive choline transporter. Biochem. Biophys. Res. Commun. 276:862–867.

    PubMed  Google Scholar 

  8. Okuda, T. and Haga, T. 2000. Functional characterization of the human high-affinity choline transporter. FEBS Lett. 484:92–97.

    PubMed  Google Scholar 

  9. Diamond, I. and Kennedy, E. P. 1969. Carrier-mediated transport of choline into synaptic nerve endings. J. Biol. Chem. 244: 3258–3263.

    PubMed  Google Scholar 

  10. Marchbanks, R. M. 1969. The conversion of 14C-choline to 14C-acetylcholine in synaptosomes in vitro. Biochem. Pharmacol. 18:1763–1766.

    PubMed  Google Scholar 

  11. Haga, T. 1971. Synthesis and release of (14C)acetylcholine in synaptosomes. J. Neurochem. 18:781–798.

    PubMed  Google Scholar 

  12. Haga, T. and Noda, H. 1973. Choline uptake systems of rat brain synaptosomes. Biochim. Biophys. Acta. 291:564–575.

    PubMed  Google Scholar 

  13. Yamamura, H. I. and Snyder, S. H. 1972. Choline: High-affinity uptake by rat brain synaptosomes. Science 178:626–628.

    PubMed  Google Scholar 

  14. Guyenet, P., Lefresne, P. Rossier, J., Beaujouan, J. C., and Glowinski, J. 1973. Inhibition by hemicholinium-3 of (14C)-acetylcholine synthesis and (3H)choline high-affinity uptake in rat striatal synaptosomes. Mol. Pharmacol. 9:630–639.

    PubMed  Google Scholar 

  15. Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K. 1973. Choline: Selective accumulation by central cholinergic neurons. J. Neurochem. 20:581–593.

    PubMed  Google Scholar 

  16. Rylett, R. J. 1988. Affinity labelling and identification of the high-affinity choline carrier from synaptic membranes of Torpedo electromotor nerve terminals with [3H]choline mustard. J. Neurochem. 51:1942–1945.

    PubMed  Google Scholar 

  17. Knipper, M., Kahle, C., and Breer, H. 1991. Purification and reconstitution of the high-affinity choline transporter. Biochim. Biophys. Acta 1065:107–113.

    PubMed  Google Scholar 

  18. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Daviddon, N., Lester, H. A., and Kanner, B. I. 1990. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306.

    PubMed  Google Scholar 

  19. Pacholczyk, T., Blakely, R. D., and Amara, S. G. 1991. Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354.

    PubMed  Google Scholar 

  20. Kanai, Y. and Hediger, M. A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471.

    PubMed  Google Scholar 

  21. Kilty, J. E., Lorang, D., and Amara, S. G. 1991. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579.

    PubMed  Google Scholar 

  22. Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M., and Uhl, G. 1991. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578.

    PubMed  Google Scholar 

  23. Hoffman, B. J., Mezey, E., and Brownstein, M. J. 1991. Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580.

    PubMed  Google Scholar 

  24. Blakely, R. D., Berson, H. E., Fremeau, R. T., Jr., Caron, M. G., Peek, M. M., Prince, H. K., and Bradley, C. C. 1991. Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70.

    PubMed  Google Scholar 

  25. Mayser, W., Schloss, P., and Betz, H. 1992. Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett. 305:31–36.

    PubMed  Google Scholar 

  26. Wright, E. M., et al. 1998. Structure and function of the Na+/glucose cotransporter. Acta Physiol Scand (Suppl.) 643:257–264.

    Google Scholar 

  27. Siegel, G., Agranoff, B, Albers, R. W., and Molinoff, P. eds. 1989. Basic Neurochemistry, 4th ed. Raven Press, New York.

    Google Scholar 

  28. Turk, E. and Wright, E. M. 1997. Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. 159:1–20.

    PubMed  Google Scholar 

  29. Misawa, H., Nakata, K., Matsuura, J., Nagao, M., Okuda, T., and Haga, T., 2001. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 105:87–98.

    PubMed  Google Scholar 

  30. Lips, K. S., Pfeil, U., Haberberger, R. V., and Kummer, W. 2002. Localisation of the high-affinity choline transporter-1 in the rat skeletal motor unit. Cell Tissue Res. 307:275–280.

    PubMed  Google Scholar 

  31. Kobayashi, Y., Okuda, T, Fujioka, Y., Matsummura, G., Nishimura, Y., and Haga, T. 2002. Distribution of the high-affinity choline transporter in the human and macaque monkey spinal cord. Neurosci. Lett. 317:25–28.

    PubMed  Google Scholar 

  32. Happe, H. K. and Murrin, L. C. 1993. High-affinity choline transport sites: Use of [3H]hemicholinium-3 as a quantitative marker. J. Neurochem. 60:1191–1201.

    PubMed  Google Scholar 

  33. Simon, J. R. and Kuhar, M. G. 1975. Impulse-flow regulation of high-affinity choline uptake in brain cholinergic nerve terminals. Nature 255:162–163.

    PubMed  Google Scholar 

  34. Okuda, T., Okamura, M., Kaitsuka, C., Haga, T., and Gurwitz, D. 2002. Single nucleotide polymorphism of the human high affinity choline transporter alters transport rate. J. Biol. Chem. 277:45315–45322.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Haga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuda, T., Haga, T. High-Affinity Choline Transporter. Neurochem Res 28, 483–488 (2003). https://doi.org/10.1023/A:1022809003997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022809003997

Navigation