Skip to main content
Log in

Specificity of the Rat Vesicular Acetylcholine Transporter

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The protein kinase A–deficient PC12 cell line PC12A123.7 lacks both choline acetyltransferase and the vesicular acetylcholine transporter. This cell line has been used to establish a stably transfected cell line expressing recombinant rat vesicular acetylcholine transporter that is appropriately trafficked to small synaptic vesicles. Acetylcholine is transported by the rat vesicular acetylcholine transporter at a maximal rate of 1.45 nmol acetylcholine/min/mg protein and exhibits a Km for transport of 2.5 mM. The transporter binds vesamicol with a Kd of 7.5 nM. The ability of structural analogs of acetylcholine to inhibit both acetylcholine uptake and vesamicol binding was measured. The results demonstrate that like Torpedo vesicular acetylcholine transporter, the mammalian transporter can bind a diverse group of acetylcholine analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Parsons, S. M., Prior, C., and Marshall, I. G. 1993. Acetylcholine transport, storage, and release. Int. Rev. Neurobiol. 35:279–389.

    PubMed  Google Scholar 

  2. Usdin, T. B., Eiden, L. E., Bonner, T. I., and Erickson, J. D. 1995. Molecular biology of the vesicular ACh transporter. Trends Neurosci. 18:218–224.

    PubMed  Google Scholar 

  3. Bahr, B. A. and Parsons, S. M. 1986. Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. J. Neurochem. 46:1214–1218.

    PubMed  Google Scholar 

  4. Bahr, B. A. and Parsons, S. M. 1986. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Proc. Natl. Acad. Sci. USA 83:2267–2270.

    PubMed  Google Scholar 

  5. Bahr, B., Clarkson, E. D., Rogers, G. A., Noremberg, K., and Parsons, S. M. 1992. A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles. Biochemistry 31:5752–5762.

    PubMed  Google Scholar 

  6. Diebler, M.-F. and Morot Gaudry-Talarmain, Y. 1989. AH5183 and cetiedil: Two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata. J. Neurochem. 52:813–821.

    PubMed  Google Scholar 

  7. Kim, M. H., Lu, M., Lim, E. J., Chai, Y. G., and Hersh, L. B. 1999. Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. J. Biol. Chem. 274:673–680.

    PubMed  Google Scholar 

  8. Kim, M. H., Lu, M., Kelly, M., Hersh, L. B. 2000. Mutational analysis of basic residues in the rat vesicular acetylcholine transporter: Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J. Biol. Chem. 275:6175–6180.

    PubMed  Google Scholar 

  9. Rogers, A. and Parsons, S. M. 1989. Inhibition of acetylcholine storage by acetylcholine analogs in vitro. Mol. Pharmacol. 36:333–341.

    PubMed  Google Scholar 

  10. Clarkson, E. D., Rogers, A., and Parsons, S. M. 1992. Binding and active transport of large analogues of acetylcholine by cholinergic synaptic vesicles in vitro. J. Neurochem. 59:695–700.

    PubMed  Google Scholar 

  11. Ginty, D. D., Glowacka, D., Defranco, C., and Wagner, J. A. 1991. Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J. Biol. Chem. 266:15325–15333.

    PubMed  Google Scholar 

  12. Inoue, H., Li, Y-P., Wagner, J. A., and Hersh, L. B. 1995. Expression of the choline acetyltransferase gene depends on protein kinase A activity. J. Neurochem. 64:985–990.

    PubMed  Google Scholar 

  13. Shimojo, M., Wu, D., and Hersh, L. B. 1998. The cholinergic gene locus (choline acetyltransferase and acetylcholine transporter genes) is coordinately regulated by protein kinase A II. J. Neurochem. 71:1118–1126.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis B. Hersh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Lu, M., Rogers, G. et al. Specificity of the Rat Vesicular Acetylcholine Transporter. Neurochem Res 28, 473–476 (2003). https://doi.org/10.1023/A:1022804903088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022804903088

Navigation