Skip to main content
Log in

Wave generation at the spin-up process in the rotating plasma

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

This paper deals with some transient in the semi-infinite plasma column rotating as a rigid body with the constant angular velocity Ω. The plasma is penetrated by the homogeneous magnetic field, parallel to the column axis, it is collisionless, cold, incompressible. The response of this system to the small abrupt change in the angular velocity at the column base is studied by performing the Laplace transform of the perturbations in time. It is found that there are effectively two distinct modes of wave-propagation generated by the complicated interaction and balance among the viscous-magnetic diffusion, ion-cyclotron gyration, plasma centrifugal action and Alfvén propagation. The region between their respective wave fronts supports an important class of spatial harmonic oscillations produced by the coupling effect of ion-gyration and inertial oscillations. The characteristics of these waves are discussed for many cases of greatest interest. The solution so obtained is found to be valid for all times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfvén H.: Nature 150 (1942) 405.

    Google Scholar 

  2. Lundquist S.: Phys. Rev. 76 (1949) 1805.

    Google Scholar 

  3. Lennert B.: Phys. Rev. 94 (1954) 815.

    Google Scholar 

  4. Jameson A.: J. Fluid Mech. 19 (1964) 513.

    Google Scholar 

  5. Alfvén H.: Cosmical Electrodynamics, Clarendon Press, Oxford, 1950, p. 87.

    Google Scholar 

  6. Walen C.: Arkiv. f. Mat. Astr. O. Fys. A 30 (1944) 15.

    Google Scholar 

  7. Roberts P.H.: Ap. J. 122 (1955) 315.

    Google Scholar 

  8. Wilcox J.M. et al.: Phys. Fluids 3 (1960) 15.

    Google Scholar 

  9. Wilcox J.M. et al.: Phys. Fluids 4 (1961) 1506.

    Google Scholar 

  10. Jephcott D.F. and Stocker P.M.: J. Fluid Mech. 13 (1962) 587.

    Google Scholar 

  11. Brown I.G.: Aust. J. Phys. 18 (1965) 437.

    Google Scholar 

  12. Gould R. et al.: Phys. Fluids 7 (1964) 269.

    Google Scholar 

  13. Cross R.C. and Lehene A.J.: Aust. J. Phys. 21 (1968) 129.

    Google Scholar 

  14. Mcpherson D.A. and Pridmore-Brown D.C.: Phys. Fluids 9 (1966) 2033.

    Google Scholar 

  15. Hasegawa A. and Uberoi C.: The Alfvén Wave, DOE, (U.S.A.), 1982.

  16. Lehane J.A. and Paoloni F.J.: Plasma Phys. 14 (1972) 461.

    Google Scholar 

  17. Lehane J.A. and Paoloni F.J.: Plasma Phys. 14 (1972) 701.

    Google Scholar 

  18. Cramer N.F.: Plasma Phys. 17 (1975) 967.

    Google Scholar 

  19. Donnelly I.J. et al.: J. Plasma Phys. 34 (1985) 227.

    Google Scholar 

  20. Chawla S.S.: Plasma Phys. 25 (1983) 519.

    Google Scholar 

  21. Sahoo L.: Czech J. Phys. B 37 (1987) 1369.

    Google Scholar 

  22. Sahoo L.: Czech J. Phys. B 39 (1989) 1120.

    Google Scholar 

  23. Benton E.R. and Lopper D.E.: J. Fluid Mech. 39 (1959) 561.

    Google Scholar 

  24. Chawla S.S.: J. Fluid Mech. 53 (1972) 545.

    Google Scholar 

  25. Strand O.N.: Math. Comput. 19 (1965) 127.

    Google Scholar 

  26. Ludford G.S.S.: Arch. Ration Mech. Anal. 3 (1959) 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, L. Wave generation at the spin-up process in the rotating plasma. Czechoslovak Journal of Physics 47, 323–335 (1997). https://doi.org/10.1023/A:1022803916921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022803916921

Keywords

Navigation