Skip to main content
Log in

Palmitoylcarnitine Modulates Palmitoylation of Proteins: Implication for Differentiation of Neural Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

[3H]Palmitic acid accumulates in neuroblastoma NB-2a cells, being incorporated in lipids (90%) and proteins (10%) fractions. Addition of palmitoylcarnitine, known to modulate activity of protein kinase C and to promote differentiation of neurons, was observed to decrease incorporation of palmitic acid to sphingomyelin, phosphatidylserine, and phosphatidylcholine, with a parallel increase of palmitic acid bound to proteins through a thioester bond (palmitoylation). In the presence of palmitoylcarnitine, one of the palmitoylated proteins expressed at growing neural cones, GAP-43, was observed to co-localize with caveolin-1, what was correlated with the beginning of differentiation. A new function of palmitoylcarnitine in controlling palmitoylation of proteins and their targeting to cholesterol-rich domains has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kerner, J. and Hoppel, C. 2000. Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486:1–17.

    PubMed  Google Scholar 

  2. Ramsay, R. R. 2000. The carnitine acyltransferases: Modulators of acyl-CoA-dependent reactions. Biochem. Soc. Trans. 28:182–186.

    PubMed  Google Scholar 

  3. Nehlig, A. and Pereira de Vasconcelos, A. 1993. Glucose and ketone bodies utilization by the brains of neonatal rats. Prog. Neurobiol. 40:163–221.

    PubMed  Google Scholar 

  4. Warshaw, J. B. and Terry, M. L. 1976. Cellular energy metabolism during fetal development: VI. Fatty acid oxidation by developing brain. Dev. Biol. 52:161–166.

    PubMed  Google Scholar 

  5. Bresolin, N., Freddo, L., Vergani, L., and Angelini, C. 1982. Carnitine, carnitine acyltransferases, and rat brain function. Exp. Neurol. 78:285–292.

    PubMed  Google Scholar 

  6. Mroczkowska, J. E., Galla, H. J., Nałęcz, M. J., and Nałęcz, K. A. 1997. Evidence for an asymmetrical uptake of L-carnitine in the blood-brain barrier in vitro. Biochem. Biophys. Res. Commun. 241:127–131.

    PubMed  Google Scholar 

  7. Mroczkowska, J. E., Roux, F. S., Nałęcz, M. J., and Nałęcz, K. A. 2000. Blood-brain barrier controls carnitine level in the brain: A study on a model system with RBE4 cells. Biochem. Biophys. Res. Commun. 267:433–437.

    PubMed  Google Scholar 

  8. Wawrzeúczyk, A., Sacher, A., Mac, M., Nałęcz, M. J., and Nałęcz, K. A. 2001. Transport of L-carnitine in isolated cerebral cortex neurons. Eur. J. Biochem. 268:2091–2098.

    PubMed  Google Scholar 

  9. Nałęcz, K. A., Korzon, D., Wawrzeúczyk, A., and Nałęcz, M. J. 1995. Transport of carnitine in neuroblastoma NB-2a cells. Arch. Biochem. Biophys. 322:214–220.

    PubMed  Google Scholar 

  10. Bonavita, E. 1986. Study of the efficacy and tolerability of L-acetylcarnitine therapy in the senile brain. Int. J. Clin. Pharmacol. Ther. Toxicol. 24:511–516.

    PubMed  Google Scholar 

  11. Spagnoli, A., Lucca, U., Menasce, G., Bandera, L., Cizza, G., Forloni, G., Tettamanti, M., Frattura, L., Tiraboschi, P., Comelli, M., et al. 1991. Long-term acetyl-L-carnitine treatment in Alzheimer's disease. Neurology 41:1726–1732.

    PubMed  Google Scholar 

  12. Tuček, S. 1985. Regulation of acetylcholine synthesis in the brain. J. Neurochem. 44:11–24.

    PubMed  Google Scholar 

  13. Doležal, V. and Tuček, S. 1981. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J. Neurochem. 36:1323–1330.

    PubMed  Google Scholar 

  14. Tuček, S. 1990. The synthesis of acetylcholine: Twenty years of progress. Prog. Brain Res. 84:467–477.

    PubMed  Google Scholar 

  15. Tuček, S., Ričeny, J., and Doležal, V. 1990. Advances in the biology of cholinergic neurons. Adv. Neurol. 51:109–115.

    PubMed  Google Scholar 

  16. Tuček, S., Doležal, V., and Sullivan, A. C. 1981. Inhibition of the synthesis of acetylcholine in rat brain slices by (-)-hydroxycitrate and citrate. J. Neurochem. 36:1331–1337.

    PubMed  Google Scholar 

  17. Tuček, S. and Cheng, S. C. 1974. Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22:893–914.

    PubMed  Google Scholar 

  18. Tuček, S. and Cheng, S. C. 1970. Precursors of acetyl groups in acetylcholine in the brain in vivo. Biochim. Biophys. Acta 208:538–540.

    PubMed  Google Scholar 

  19. Ričny, J., Tuček, S. and Novakova, J. 1992. Acetylcarnitine, carnitine and glucose diminish the effect of muscarinic antagonist quinuclidinyl benzilate on striatal acetylcholine content. Brain Res. 576:215–219.

    PubMed  Google Scholar 

  20. Tuček, S., Ričny, J., and Doležal, V. 1982. Acetylcoenzyme A and the control of the synthesis of acetylcholine in the brain. Acta Neurobiol. Exp. 42:59–68.

    Google Scholar 

  21. Tuček, S. 1983. Acetylcoenzyme A and the synthesis of acetylcholine in neurones: Review of recent progress. Gen. Physiol. Biophys. 2:313–324.

    PubMed  Google Scholar 

  22. Kamiúska, J., Nałęcz, K. A., and Nałęcz, M. J. 1995. Mechanism of carnitine transport catalyzed by carnitine carrier from rat brain mitochondria. Acta Neurobiol. Exp. 55:1–9.

    Google Scholar 

  23. Wawrzeúczyk, A., Nałęcz, K. A., and Nałęcz, M. J. 1994. Synergistic effect of choline and carnitine on acetylcholine synthesis in neuroblastoma NB-2a cells. Biochem. Biophys. Res. Commun. 202:354–359.

    PubMed  Google Scholar 

  24. Wawrzeúczyk, A., Nałęcz, K. A., and Nałęcz, M. J. 1995. Effect of externally added carnitine on the synthesis of acetylcholine in rat cerebral cortex cells. Neurochem. Int. 26:635–641.

    PubMed  Google Scholar 

  25. Wawrzeúczyk, A., Nałęcz, K. A., and Nałęcz, M. J. 1995. Effect of gamma-aminobutyric acid on the carnitine metabolism in neural cells. Biochem. Biophys. Res. Commun. 213: 383–388.

    PubMed  Google Scholar 

  26. Nałęcz, K. A., Mroczkowska, J. E., Berent, U., and Nałęcz, M. J. 1997. Effect of palmitoylcarnitine on the cellular differentiation, proliferation and protein kinase C activity in neuroblastoma nb-2a cells. Acta Neurobiol. Exp. 57:263–274.

    Google Scholar 

  27. Sobiesiak-Mirska, J., Nałęcz, M. J., and Nałęcz, K. A. 2003. Interaction of palmitoylcarnitine with protein kinase C in neuroblastoma NB-2a cells. Neurochem. Int. 42:45–55.

    PubMed  Google Scholar 

  28. Mizgalska, J. A., Berent, U., Mac, M., Oestreicher, A. B., De Graan, P. N. E., Gispen, W. H., Nałęcz, M. J., and Nałęcz, K. A. 1998. Accumulation of palmitoylcarnitine in neuroblastoma NB-2a cells affects the expression, phosphorylation and localization of B-50 protein. Neurosci. Res. Commun. 22: 73–82.

    Google Scholar 

  29. Oestreicher, A. B., De Graan, P. N., Gispen, W. H., Verhaagen, J., and Schrama, L. H. 1997. B-50, the growth associated protein-43: Modulation of cell morphology and communication in the nervous system. Prog. Neurobiol. 53:627–686.

    PubMed  Google Scholar 

  30. Skene, J. H. and Virag, I. 1989. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108:613–624.

    PubMed  Google Scholar 

  31. Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:569–572.

    PubMed  Google Scholar 

  32. Patterson, S. I. and Skene, J. H. 1995. Inhibition of dynamic protein palmitoylation in intact cells with tunicamycin. Methods Enzymol. 250:284–300.

    PubMed  Google Scholar 

  33. Wessel, D. and Flügge, U. I. 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138:141–143.

    PubMed  Google Scholar 

  34. Nałęcz, M. J., Nałęcz, K. A., and Azzi, A. 1986. Extraction, partial purification and reconstitution of a mixture of carriers from the inner mitochondrial membrane. Pages 67–75, in Azzi, A., Masotti, L., and Vecli, A. (eds.), Membrane Proteins: Isolation and Characterization. Springer-Verlag, Berlin.

    Google Scholar 

  35. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  36. Slomiany, B. L., Takagi, A., Liau, Y. H., Jozwiak, Z., and Slomiany, A. 1984. In vitro acylation of rat gastric mucus glycoprotein with [3H]palmitic acid. J. Biol. Chem. 259:11997–20000.

    PubMed  Google Scholar 

  37. Agrawal, H. C. and Agrawal, D. 1989. Effect of cycloheximide on palmitylation of PO protein of the peripheral nervous system myelin. Biochem. J. 263:173–177.

    PubMed  Google Scholar 

  38. Kates, M. 1986. Identification of individual lipids and lipid moieties. Pages 326–424, in Burdon, R. H. and Knippenberg, P. H. (eds.), Techniques of Lipidology: Isolation, Analysis and Identification of Lipids. Vol. 3. Elsevier Science B.V., Amsterdam.

    Google Scholar 

  39. Benowitz, L. I. and Routtenberg, A. 1997. GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20:84–91.

    PubMed  Google Scholar 

  40. Pralle, A., Keller, P., Florin, E. L., Simons, K., and Horber, J. K. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148:997–1008.

    PubMed  Google Scholar 

  41. Wakim, B. T., Alexander, K. A., Masure, H. R., Cimler, B. M., Storm, D. R., and Walsh, K. A. 1987. Amino acid sequence of P-57, a neurospecific calmodulin-binding protein. Biochemistry 26:7466–7470.

    PubMed  Google Scholar 

  42. Strittmatter, S. M., Valenzuela, D., Kennedy, T. E., Neer, E. J., and Fishman, M. C. 1990. G0 is a major growth cone protein subject to regulation by GAP-43. Nature 344:836–841.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Nałęcz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczepankowska, D., Nałęcz, K.A. Palmitoylcarnitine Modulates Palmitoylation of Proteins: Implication for Differentiation of Neural Cells. Neurochem Res 28, 645–651 (2003). https://doi.org/10.1023/A:1022802229921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022802229921

Navigation