Skip to main content

Advertisement

Log in

The Evolutionary Origins of Maternal Calcium and Bone Metabolism During Lactation

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Calcium is required for skeletal growth in all vertebrate offspring. In eutherian mammals, calcium is provided by the mother via the placenta during fetal growth and via milk until weaning. Transferring calcium to offspring during pregnancy and lactation significantly stresses maternal calcium homeostasis. During human pregnancy, the extra calcium requirements are met primarily by an increase in absorption of calcium from the diet and by a modest increase in rates of bone resorption. In nursing mothers, the calcium required for milk production is generated by a dramatic increase in rates of bone resorption and a decrease in the rate of renal calcium excretion. To consider the evolution of these maternal adaptations in bone and calcium metabolism, comparisons are made across different species of mammals, and the fundamental problem of maternal transfer of calcium to young is explored in lower vertebrates. These comparisons suggest that maternal adaptations in calcium and bone metabolism during pregnancy and lactation in mammals originate from adaptations in bone and mineral metabolism that supply calcium for egg production in lower vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Albright and E. Reifenstein (1948). The Parathyroid Glands and Metabolic Bone Disease, Williams and Wilkins, Baltimore.

    Google Scholar 

  2. C. S. Kovacs and H. M. Kronenberg (1997). Maternal-fetal calcium and bone metabolism during pregnancy, pueriperium, and lactation. Endocr.Rev. 18: 832–872.

    PubMed  Google Scholar 

  3. C. Kovacs (2001). Calcium and bone metabolism in pregnancy and lactation. J.Clin.Endocrinol.Metab. 86: 2344–2348.

    PubMed  Google Scholar 

  4. R. L. Horst, J. P. Goff, and T. A. Reinhardt (1997). Calcium and vitamin D metabolism. J.Mam.Gland Biol.Neoplasia 2: 253–263.

    Google Scholar 

  5. N. Charoenphandhu, L. Limiomwongse, and N. Krishnamra. (2001). Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can.J.Physiol.Pharmacol.79: 430–438.

    PubMed  Google Scholar 

  6. L. D. Ritchie, E. B. Fung, B. P. Halloran, J. R. Turnland, M. D. VanLoan, C. E. Cann, and J. C. King (1998). A longi-tudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am.J.Clin.Nutr.67: 693–701.

    PubMed  Google Scholar 

  7. A. J. Phillips, S. J. Ostlere, and R. Smith (2000). Pregnancy-associated osteoporosis: Does the skeleton recover? Osteo-poros. Int. 11: 449–454.

    Google Scholar 

  8. C. Karlsson, K. J. Obrant, and M. Karlsson (2001). Pregnancy and lactation confer reversible bone loss in humans. Osteo-poros. Int. 12: 828–834.

    Google Scholar 

  9. M. Sowers (1996). Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J.Bone Miner.Res.11: 1052–1060.

    PubMed  Google Scholar 

  10. M. Sowers, D. Eyre, B. W. Hollis, J. F. Randolph, B. Shapiro, M. L. Jannausch, and M. Crutchfield (1995). Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J.Clin.Endocrinol.Metab. 80: 2210–2216.

    PubMed  Google Scholar 

  11. S. C. Manolagas (2000). Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr.Rev. 21: 115–137.

    PubMed  Google Scholar 

  12. H. Rico, F. Arnanz, M. Revilla, S. Perera, M. Iritia, L. F. Villa, and I. Arribas (1993). Total and regional bone mineral content in women treated with GnRH agonists. Calcif.Tissue Int.52: 354–357.

    PubMed  Google Scholar 

  13. G. J. Strewler (2000). The physiology of parathyroid hormone-related protein. N.Engl.J.Med. 342: 177–185.

    PubMed  Google Scholar 

  14. M. F. Sowers, B. W. Hollis, B. Shapiro, J. Randolph, C. A. Janney, D. Zhang, M. A. Schork, M. Crutchfield, F. Stanczyk, and M. Russel-Aulet (1996). Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA 276: 549–554.

    PubMed  Google Scholar 

  15. H. Dobnig, F. Kainer, V. Stepan, R. Winter, R Lipp, M. Schaffer, A. Kahr, S. Nocnik, G. Patterer, and G. Leb (1995). Elevated parathyroid hormone-related peptide levels after human gesta-tion: Relationship to changes in bone and mineral metabolism. J.Clin.Endocrinol.Metab. 80: 3699–3707.

    PubMed  Google Scholar 

  16. U. S. Masiukiewicz, M. Mitnik, B. I. Gulanski, and K. L. Insogna (2002). Evidence that the IL-6/IL-6 soluble receptor cytokine system plays a role in the increased skeletal sensitivity to PTHin estrogen-deficient women. J.Clin.Endocrinol.Metab. 87: 2892–2898.

    PubMed  Google Scholar 

  17. M. Griffiths (1968). The Mammary Glands, in Echidnas, Pergamon, Oxford, pp. 178–209.

    Google Scholar 

  18. B. Green and J. C. Merchant (1988). The composition of marsupial milk. In C. H. Tyndale-Biscoe and P. A. Janssens (eds.), The Developing Marsupial.Models for Biomedical Research, Springer-Verlag, Berlin, pp. 41–67.

    Google Scholar 

  19. O. T. Oftedal (1997). Lactation in whales and dolphins: Evidence of divergence between baleen-and toothed-species. J.Mam.Gland Biol.Neoplasia 2: 205–230.

    Google Scholar 

  20. S. G. Garner, T. Peng, P. F. Hirsch, A. Boass, and S. U. Toverud (1987). Increase in serum parathyroid hormone concentration in the lactating rat: Effects of dietary calcium and lactational intensity. J.Bone Miner.Res. 2: 347–352.

    PubMed  Google Scholar 

  21. S. C. Garner, A. Boass, and S. U. Toverud (1990). Parathyroid hormone is not required for normal milk composition or secretion or lactation-associated bone loss in normocalcemic rats. J.Bone Miner.Res. 5: 69–75.

    PubMed  Google Scholar 

  22. D. W. Hodnett, H. F. DeLuca, and N. A. Jorgenson (1992). Bone mineral loss during lactation occurs in the absence of parathyroid tissue. Am.J.Physiol. 262: E230–E233.

    PubMed  Google Scholar 

  23. B. P. Halloran and H. F. DeLuca (1980). Skeletal changes during pregnancy and lactation: The role of vitamin D. Endocrinology 107: 1923–1929.

    PubMed  Google Scholar 

  24. F. R. Greer, J. Lane, and M. Ho(1984). Elevated serum parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D in lactating women nursing twins. Am.J.Clin.Nutr. 40: 562–568.

    PubMed  Google Scholar 

  25. O. A. Schjeide (1985). Calcium transport in nonmammalian vertebrates. Clin.Orthop. 200: 165–173.

    PubMed  Google Scholar 

  26. V. A. Lance, L. A. Morici, R. M. Elsey, E. R. Lund, and A. R. Place (2001). Hyperlipidemia and reproductive failure in captive-reared alligators: Vitamin E, vitamin A, plasma lipids, fatty acids, and steroid hormones. Comp.Biochem.Physiol.B 128: 285–294.

    PubMed  Google Scholar 

  27. J. D. Feinblatt (1982). The comparative physiology of calcium regulation in submammalian vertebrates. Adv.Comp.Physiol. Biochem. 8: 73–110.

    PubMed  Google Scholar 

  28. X. Bonnet, G. Naulleau, and R. Mauget (1994). The influence of body condition on 17-¯estradiol levels in relation to vitello-genesis in female Vipera aspis(reptilia, viperidae). Gen.Comp. Endocrinol. 93: 427–437.

    Google Scholar 

  29. J. Heck, D. S. MacKenzie, D. Rostal, K. Medler, and D. Owens (1997). Estrogen induction of plasma vitellogenin in the Kemp's Ridley sea turtle (Lepidochelys kempi). Gen.Comp.Endocrinol. 107: 280–288.

    PubMed  Google Scholar 

  30. R. M. Elsey and C. S. Wink (1986). The effects of estradiol on plasma calcium and femoral bone structure in alligators (Alligator Mississippiensis). Comp.Biochem.Physiol. 84: 107–110.

    Google Scholar 

  31. L. Magliola (1984). The effects of estrogen on skeletal calcium metabolism and on plasma parameters of vitellogenesis in the male, three-toed box turtle (Terrapene carolina triunguis). Gen. Comp.Endocrinol 54: 162–170.

    PubMed  Google Scholar 

  32. P. M. Guerreiro, J. Fuentes, A. V. M. Canario, and D. M. Power (2002). Calcium balance in the sea bream (Sparus aurata): The effect of oestradiol-17¯. J.Endocrinol. 173: 377–385.

    PubMed  Google Scholar 

  33. M. A. Bloom, W. Bloom, L. V. Domm, and F. C. McLean (1940). Changes in avian bone due to injected estrogen and during the reproductive cycle. Anat.Rec. 78: 143.

    Google Scholar 

  34. C. S. Wink and R. M. Elsey (1986). Changes in femoral mor-phology during egg-laying in Alligator mississippiensis. J.Morphol. 189: 183–188.

    Google Scholar 

  35. C. S. Wink, R. M. Elsey, and E. M. Hill (1987). Changes in femoral robusticity and porosity during the reproductive cycle of the female alligator (Alligator mississippiensis). J.Morphol. 193: 317–321.

    Google Scholar 

  36. M. Alcobendas, C. A. Baud, and J. Castanet (1991). Structural changes of the periosteocytic area in Vipera aspis (L.) (Ophidia, Viperidae) bone tissue in various physiological conditions. Calcif. Tissue Int. 49: 53–57.

    PubMed  Google Scholar 

  37. J. P. VanDeVelde, N. Loveridge, and J. P. W. Vermeiden (1984). Parathyroid hormone responses to calcium stress during eggshell calcification. Endocinology 115: 1901–1904.

    Google Scholar 

  38. J. P. Van De Velde, J. P. W. Vermeiden, J. J. A. Touw, and J. P. Veldhuijzen (1984). Changes in activity of chicken medullary bone cell populations in relation to the egg-laying cycle. Metab. Bone Dis.Relat.Res. 5: 191–193.

    PubMed  Google Scholar 

  39. Y. Nys, T. M. N'Guyen, J. Williams, and R. J. Etches (1986). Blood levels of ionized calcium, inorganic phosphorus, 1,25-dihydroxycholecalciferal and gonadal hormones in hens laying hard-shelled or shell-less eggs. J.Endocrinol. 111: 151–157.

    PubMed  Google Scholar 

  40. M. A. Elaroussi, L. R. Forte, S. L. Eber, and H. V. Biellier (1993). Adaptations of the kidney during reproduction: Role of estrogen in the regulation of responsiveness to parathyroid hormone. Poult.Sci. 72: 1548–1556.

    PubMed  Google Scholar 

  41. S. C. Miller (1977). Osteoclast cell-surface changes during the egg-laying cycle in Japanese quail. J.Cell Biol. 75: 104–118.

    PubMed  Google Scholar 

  42. K. J. Armour, D. B. Lehane, F. Pakdel, Y. Valotaire, R. Graham, R. G. Russell, and I. W. Henderson (1997). Estrogen receptor mRNA in mineralized tissues of rainbow trout: Calcium mobilization by estrogen. FEBS Lett. 411: 145–148.

    PubMed  Google Scholar 

  43. G. Flik, J. C. Fenwick, Z. Kolar, N. Mayer-Gostan, and S. E. Wendelaar Bonga (1986). Effects of low ambient calcium levels on Ca2 C flux rates and internal calcium pools in the fresh-water cichlid teleost, Oreochromis mossambicus. J.Exp.Biol.120: 249–264.

    Google Scholar 

  44. Y. Mugiya and N. Watabe (1977). Studies on fish scale formation and resorption II. Effect of estradiol on calcium hoemostasis and skeletal tissue in the goldfish, Carassius auratus and the killifish, Fundulus heteroclitus. Comp.Biochem.Physiol.A 57: 197–202.

    Google Scholar 

  45. W. A. Stini (1998). Calcium homeostasis and human evolution. Collegium Antropologicum 22: 411–425.

    PubMed  Google Scholar 

  46. T. A. Guise and G. R. Mundy (1998). Cancer and bone. Endocr. Rev. 19: 18–54.

    PubMed  Google Scholar 

  47. T. A. Guise, J. J. Lin, S. D. Taylor, Y. Kumagai, M. Dallas, B. Boyce, T. Yoneda, and G. R. Mundy (1996). Evidence for a causal role for parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J.Clin.Invest. 98: 1544–1549.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysolmerski, J.J. The Evolutionary Origins of Maternal Calcium and Bone Metabolism During Lactation. J Mammary Gland Biol Neoplasia 7, 267–276 (2002). https://doi.org/10.1023/A:1022800716196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022800716196

Navigation