Skip to main content
Log in

Generalized Quasi-Variational Inequalities Without Continuities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Given a nonempty set \(X \subseteq \mathbb{R}^n \) and two multifunctions \(\beta :X \to 2^X ,\phi :X \to 2^{\mathbb{R}^n } \), we consider the following generalized quasi-variational inequality problem associated with X, β φ: Find \((\bar x,\bar z) \in X \times \mathbb{R}^n \) such that \(\bar x \in \beta (\bar x),\bar z \in \phi (\bar x){\text{, and sup}}_{y \in \beta (\bar x)} \left\langle {\bar z,\bar x - y} \right\rangle \leqslant 0\). We prove several existence results in which the multifunction φ is not supposed to have any continuity property. Among others, we extend the results obtained in Ref. 1 for the case β(x(≡X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. YAO, J. C., and GUO, J. S., Variational and Generalized Variational Inequalities with Discontinuous Mappings, Journal of Mathematical Analysis and Applications, Vol. 182, pp. 371–392, 1994.

    Google Scholar 

  2. HARTMAN, P., and STAMPACCHIA, G., On Some Nonlinear Elliptic Differential Functional Equations, Acta Mathematica, Vol. 115, pp. 153–188, 1996.

    Google Scholar 

  3. EAVES, B. C., On the Basic Theorem of Complementarity, Mathematical Programming, Vol. 1, pp. 68–75, 1971.

    Google Scholar 

  4. HARKER, P. T., and PANG, J. S., Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161–220, 1990.

    Google Scholar 

  5. KARAMARDIAN, S., Generalized Complementarity Problem, Journal of Optimization Theory and Applications, Vol. 8, pp. 161–168, 1971.

    Google Scholar 

  6. KARAMARDIAN, S., An Existence Theorem for the Complementarity Problem, Journal of Optimization Theory and Applications, Vol. 18, pp. 445–454, 1976.

    Google Scholar 

  7. FANG, S. C., and PETERSON, E. L., Generalized Variational Inequalities, Journal of Optimization Theory and Applications, Vol. 38, pp. 363–383, 1982.

    Google Scholar 

  8. CHAN, D., and PANG, J. S., The Generalized Quasi-Variational Inequality Problem, Mathematics of Operations Research, Vol. 7, pp. 211–222, 1982.

    Google Scholar 

  9. HABETLER, G. J., and PRICE, A. J., Existence Theory for Generalized Nonlinear Complementarity Problem, Journal of Optimization Theory and Applications, Vol. 7, pp. 229–239, 1971.

    Google Scholar 

  10. KARAMARDIAN, S., The Complementarity Problem, Mathematical Programming, Vol. 2, pp. 107–129, 1972.

    Google Scholar 

  11. SAIGAL, R., Extension of the Generalized Complementarity Problem, Mathematics of Operations Research, Vol. 1, pp. 260–266, 1976.

    Google Scholar 

  12. CUBIOTTI, P., Finite-Dimensional Quasi-Variational Inequalities Associated with Discontinuous Functions, Journal of Optimization Theory and Applications, Vol. 72, pp. 577–582, 1992.

    Google Scholar 

  13. CUBIOTTI, P., An Existence Theorem for Generalized Quasi-Variational Inequalities, Set-Valued Analysis, Vol. 1, pp. 81–87, 1993.

    Google Scholar 

  14. RICCERI, B., Un Théorème d'Existence pour les Inéquations Variationnelles, Comptes Rendus de l'Académie des Sciences, Paris, Série I, Vol. 301, pp. 885–888, 1985.

    Google Scholar 

  15. YAO, J. C., Generalized Quasi-Variational Inequality Problems with Discontinuous Mappings, Mathematics of Operations Research, Vol. 20, pp. 465–478, 1995.

    Google Scholar 

  16. BROWDER, F. E., The Fixed-Point Theory of Multi-Valued Mappings in Topological Vector Spaces, Mathematische Annalen, Vol. 177, pp. 283–301, 1968.

    Google Scholar 

  17. DING, X. P., and TAN, K. K., Generalized Variational Inequalities and Generalized Quasi-Variational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 148, pp. 497–508, 1990.

    Google Scholar 

  18. KIM, W. K., Remark on a Generalized Quasi-Variational Inequality, Proceedings of the American Mathematical Society, Vol. 103, pp. 667–668, 1988.

    Google Scholar 

  19. KINDERLEHRER, D., and STAMPACCHIA, G., An Introduction to Variational Inequalites and Their Applications, Academic Press, New York, New York, 1980.

    Google Scholar 

  20. SHIH, M. H., and TAN, K. K., Generalized Quasi-Variational Inequalities in Locally Convex Topological Vector Spaces, Journal of Mathematical Analysis and Applications, Vol. 108, pp. 333–343, 1985.

    Google Scholar 

  21. SHIH, M. H., and TAN, K. K., Generalized Bi-Quasi-Variational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 143, pp. 66–85, 1989.

    Google Scholar 

  22. AUBIN, J. P., and FRANKOWSKA, H., Set-Valued Analysis, Birkhäuser, Basel, Switzerland, 1990.

    Google Scholar 

  23. KLEIN, E., and THOMPSON, A. C., Theory of Correspondences, Wiley, New York, New York, 1984.

    Google Scholar 

  24. DEIMLING, K., Nonlinear Functional Analysis, Springer Verlag, Berlin, Germany, 1985.

    Google Scholar 

  25. FAN, K., Fixed-Point and Minimax Theorems in Locally Convex Topological Linear Spaces, Proceedings of the National Academy of Sciences of the USA, Vol. 38, pp. 121–126, 1952.

    Google Scholar 

  26. NASELLI RICCERI, O., On the Convering Dimension of the Fixed Point Set of Certain Multifunctions, Commentationes Mathematicae Universitatis Carolinae, Vol. 32, pp. 281–286, 1991.

    Google Scholar 

  27. MICHAEL, E., Continuous Selections I, Annals of Mathematics, Vol. 63, pp. 361–382, 1956.

    Google Scholar 

  28. AUBIN, J. P., Optima and Equilibria, Springer Verlag, Berlin, Germany, 1993.

    Google Scholar 

  29. KNESER, H., Sur un Théorème Fondamantal de la Théorie des Juex, Comptes Rendus de l'Académie des Sciences, Paris, Vol. 234, pp. 2418–2420, 1952.

    Google Scholar 

  30. NASELLI RICCERI, O., and RICCERI, B., An Existence Theorem for Inclusions of the Type Ψ(u((tF(t, Φ(u)(t)) and Application to a Multi-Valued Boundary-Value Problem, Applicable Analysis, Vol. 38, 259–270, 1990.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubiotti, P. Generalized Quasi-Variational Inequalities Without Continuities. Journal of Optimization Theory and Applications 92, 477–495 (1997). https://doi.org/10.1023/A:1022699205336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022699205336

Navigation