Skip to main content
Log in

Some Approaches to the Solution of Problems on Thin Shells with Variable Geometrical and Mechanical Parameters

  • Published:
International Applied Mechanics Aims and scope

Abstract

A number of approaches to the solution of stress problems for anisotropic inhomogeneous shells in the classical formulation are discussed. A review is made of approaches to the solution of one- and two-dimensional static problems for thin shells with variable parameters and to the solution of stress–strain problems for anisotropic shells of revolution under axisymmetric and non-axisymmetric loading, shallow convexo-convex shells, noncircular cylindrical shells, plates of various shapes, and shells of complex geometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Agapova and V. A. Soboleva, “Analysis of discretely full-strength circular plates with elastic concentric supports,” in: Proc. Int. Conf. on Urgent Problems in the Mechanics of Shells (on the occasion of the 100th anniversary of Prof. Kh. M. Mushtari, 90th anniversary of Prof. K. Z. Galimov, and the 80th anniversary of Prof. M. S. Kornishin) [in Russian], Novoe Znanie, Kazan’ (2000), pp. 20–25.

    Google Scholar 

  2. L. A. Agalovyan, The Asymptotic Theory of Anisotropic Plates and Shells [in Russian], Fizmatlit, Moscow (1997).

    Google Scholar 

  3. S. A. Ambartsumyan, The Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1961).

    Google Scholar 

  4. Yu. P. Artyukhin and S. A. Malkin, “An asymmetric one-dimensional contact problem for plates interacting with a rigid body,” in: Proc. Int. Conf. on Urgent Problems in the Mechanics of Shells (on the occasion of the 100th anniversary of Prof. Kh. M. Mushtari, 90th anniversary of Prof. K. Z. Galimov, and the 80th anniversary of Prof. M. S. Kornishin) [in Russian], Novoe Znanie, Kazan’ (2000), pp. 92–97.

    Google Scholar 

  5. N. S. Bakhvalov, “Efficient methods for solution of stiff multivariate multiparameter problems,” Zh. Vych. Mat. Mat. Fiz., 39, No. 12, 2019–2049 (1999).

    Google Scholar 

  6. A. T. Vasilenko, “Determination of the temperature and mechanical fields in anisotropic elliptic plates,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 1, 19–23 (1997).

    Google Scholar 

  7. A. T. Vasilenko, “Solution of stress problems for compound plates,” Prikl. Mekh., 33, No. 12, 68–74 (1997).

    Google Scholar 

  8. A. T. Vasilenko and Ya. M. Grigorenko, “The stress state of orthotropic shells of revolution in unilateral contact with an elastic foundation,” Prikl. Mekh., 37, No. 12, 50–54 (1996).

    Google Scholar 

  9. A. T. Vasilenko, Ya. M. Grigorenko, and G. K. Sudavtsova, “Stress-strain analysis of elastic systems consisting of anisotropic shells of revolution and rings,” Rasch. Prochn., No. 32, 57–67 (1990).

    Google Scholar 

  10. A. T. Vasilenko and P. N. Savchenko, “Solution of the bending problem for a round plate with linearly anisotropic elastic properties,” Dokl. NAN Ukrainy, No. 4, 31–35 (1992).

    Google Scholar 

  11. A. T. Vasilenko and V. V. Semenova, “The stress state of asymmetrically loaded, pointwise supported shells of revolution,” Probl. Prochn., No. 8, 31–35 (1992).

    Google Scholar 

  12. A. T. Vasilenko and G. K. Sudavtsova, “Deformation of thin shallow inhomogeneous shells,” Prikl. Mekh., 31, No. 3, 60–66 (1995).

    Google Scholar 

  13. A. T. Vasilenko, G. K. Sudavtsova, and V. V. Semenova, “Axisymmetric contact of anisotropic shells of revolution with rigid and elastic foundations,” Obch. Prykl. Mat., No. 76, 70–74 (1992).

    Google Scholar 

  14. A. T. Vasilenko and G. P. Urusova, “The stress state of simply supported laminated elliptic plates made of anisotropic materials,” Mekh. Komp. Mater., No. 4, 496–504 (1997).

    Google Scholar 

  15. A. T. Vasilenko and G. P. Urusova, “Solution of stress problems for shells on discrete supports,” in: Differential and Integral Equations of Mathematical Physics (Collection of Scientific Papers) [in Russian], Inst. Mat. NAN Ukrainy, Kiev (1997), pp. 44–46.

    Google Scholar 

  16. V. V. Vasil'ev, Mechanics of Composite Structures [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  17. Yu. I. Vinogradov and G. V. Men'kov, “The method of functional normalization of stiff linear ordinary differential equations for boundary-value problems,” Dokl. RAN, 358, No. 6, 763–764 (1998).

    Google Scholar 

  18. J. R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff, Dordrecht (1986).

    Google Scholar 

  19. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk., 16, No. 3, 171–174 (1961).

    Google Scholar 

  20. É. I. Grigolyuk and E. A. Kogan, Statics of Elastic Laminated Shells [in Russian], NII Mekh. MGU, Moscow (1999).

    Google Scholar 

  21. Ya. M. Grigorenko, “Numerical solution of some classes of problems in shell theory,” in: Mechanics of Shells and Plates in the 21st Century (Interuniversity Collection of Scientific Papers) [in Russian], Izd. Saratov. Gos. Tekhn. Univ., Saratov (1999), pp. 31–42.

    Google Scholar 

  22. Ya. M. Grigorenko and M. N. Berenov, “Spline-collocation solution of static problems for shallow shells,” Prikl. Mekh., 24, No. 5, 32–38 (1988).

    Google Scholar 

  23. Ya. M. Grigorenko and M. N. Berenov, “Spline-approximation solution of two-dimensional bending problems for rectangular plates,” Dokl. AN USSR, Ser. A, No. 8, 22–25 (1987).

    Google Scholar 

  24. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Nonconstant Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  25. Ya. M. Grigorenko and A. T. Vasilenko, Static Problems for Anisotropic Inhomogeneous Shells [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  26. Ya. M. Grigorenko and A. T. Vasilenko, “Solution of problems for and stress-strain analysis of anisotropic inhomogeneous shells (review),” Prikl. Mekh., 33, No. 11, 3–38 (1997).

    Google Scholar 

  27. Ya. M. Grigorenko, A. T. Vasilenko, I. G. Emel'yanov et al., Statics of Structural Members, Vol. 8 of the 12-volume series Mechanics of Composites [in Russian], A.S.K., Kiev (1999).

    Google Scholar 

  28. Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Design of Noncircular Cylindrical Shells [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  29. Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Problems in the Elastic Theory of Inhomogeneous Body [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  30. Ya. M. Grigorenko and N. N. Kryukov, “Solution of problems in the theory of plates and shells with application of spline functions (review),” Prikl. Mekh., 31, No. 6, 22–27 (1995).

    Google Scholar 

  31. Ya. M. Grigorenko and M. M. Kryukov, “Solution of boundary-value problems in the theory of laminated plates using spline-functions,” Dop. NAN Ukrainy, No. 5, 34–37 (2001).

    Google Scholar 

  32. Ya. M. Grigorenko and G. K. Sudavtsova, “Solution of static problems for shells of revolution under local loads,” Dop. AN URSR, Ser. A, No. 2, 139–142 (1971).

    Google Scholar 

  33. Ya. M. Grigorenko and A. M. Timonin, “On one approach to the numerical solution of two-dimensional problems in the theory of plates and shells with variable parameters,” Prikl. Mekh., 23, No. 6, 54–63 (1987).

    Google Scholar 

  34. Ya. M. Grigorenko and A. M. Timonin, “Numerical solution of problems in the mechanics of complex shells using general coordinate systems,” Prikl. Mekh., 28, No. 7, 50–56 (1992).

    Google Scholar 

  35. A. N. Guz, A. S. Kosmodamianskii, V. P. Shevchenko et al., Stress Concentration, Vol. 7 of the 12-volume series Mechanics of Composites [in Russian], A.S.K., Kiev(1998).

    Google Scholar 

  36. V. I. Gulyaev, V. A. Bazhenov, E. A. Gotsulyak, and V. V. Gaidachuk, Design of Complex Shells [in Russian], Budivel'nyk, Kiev (1990).

    Google Scholar 

  37. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Fizmatgiz, Moscow-Leningrad (1962).

    Google Scholar 

  38. T. P. Knysh, “Design of a closed spherical shell under a local axisymmetric load,” Vestn. S.-Peterburg. Univ., No. 2, 94–97 (1998).

    Google Scholar 

  39. A. D. Kovalenko, Ya. M. Grigorenko, and L. A. Il'in, The Theory of Thin Conic Shells and Its Application in Mechanical Engineering [in Russian], Izd. AN USSR, Kiev (1963).

    Google Scholar 

  40. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill Book Company (1968).

  41. S. Lukasiewicz, Local Loads in Plates and Shells, PWN-Polish Sci. Publ., Warsaw (1979).

    Google Scholar 

  42. T. Y. Na, Computational Methods in Engineering Boundary-Value Problems, Academic Press, New York (1979).

    Google Scholar 

  43. Yu. V. Nemirovskii, “Inverse problems in the mechanics of thin-walled composite structures,” Mekh. Komp. Mater., No. 5-6, 655–669 (2001).

    Google Scholar 

  44. M. U. Nikabadze, “Deformation gradients in the theory of shells with two base surfaces,” Izv. RAN, Mekh. Tverd. Tela, No. 4, 80–90 (2001).

    Google Scholar 

  45. I. F. Obraztsov and Yu. I. Vinogradov, “Problems of constructing efficient methods in the deformation mechanics of thin-walled structures,” in: Proc. 19th Int. Conf. on the Theory of Shells and Plates [in Russian], Izd. NNGU, Nizhni Novgorod (1999), pp. 8–12.

    Google Scholar 

  46. I. F. Obraztsov, B. V. Nerubailo, and V. P. Ol'shanskii, “The method of two-dimensional displays in local strength problems for shells,” Dokl. AN SSSR, 295, No. 1, 56–59 (1987).

    Google Scholar 

  47. V. V. Pikul', “Current problems in shell theory,” in: Proc. Int. Conf. on Urgent Problems in the Mechanics of Shells (on the occasion of the 100th anniversary of Prof. Kh. M. Mushtari, 90th anniversary of Prof. K. Z. Galimov, and the 80th anniversary of Prof. M. S. Kornishin) [in Russian], Novoe Znanie, Kazan’ (2000), pp. 338–343.

    Google Scholar 

  48. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).

    Google Scholar 

  49. V. S. Chernina, Statics of Thin-Walled Shells of Revolution [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  50. K. F. Chernykh, Linear Theory of Shells [in Russian], Izd. LGU, Leningrad, Part 1 (1962), Part 2 (1964).

    Google Scholar 

  51. J. Argyris and L. Tenek, “Natural mode method: A practicable and novel approach to the global analysis of laminated composite plates and shells,” Appl. Mech. Rev., 49, No. 7, 381–399 (1996).

    Google Scholar 

  52. E. L. Axelrad, “Shell theory and its specialized branches,” Int. J. Solids Struct., 37, No. 10, 1425–1451 (2000).

    Google Scholar 

  53. Y. Bian, “Bending of rectangular plane with each edges arbitrary a point supported under a concentrated load,” Appl. Math. Mech., 21, No. 5, 591–596 (2000).

    Google Scholar 

  54. V. Birman and D. Huv, Thermal Effects on Structures and Materials (Winter Annual Meeting of ASME, Dallas, Nov. 1990), ASME, New York (1990).

    Google Scholar 

  55. W. S. Burton and A. K. Noor, “Assessment of computational models for sandwich panels and shells,” Comput. Meth. Appl. Mech. Eng., 124, 125–151 (1995).

    Google Scholar 

  56. G. C. Davies and D. M. Bruce, “A stress analysis model for composite coaxial cylinders,” J. Mater. Sci., 32, No. 20, 5425–5437 (1997).

    Google Scholar 

  57. K. Ding and L. Tang, “The solution of weak formulation for axisymmetric problem of orthotropic cantilever cylindrical shell,” Appl. Math. Mech., 20, No. 6, 615–621 (1999).

    Google Scholar 

  58. W. Flugge, Stresses in Shells, Springer-Verlag, Berlin-Heidelberg-New York (1967).

    Google Scholar 

  59. M. Gredias, “On the design of some particular orthotropic plates with nonstandard ply orientations,” J. Comp. Mater., 34, No. 19, 1665–1693 (2000).

    Google Scholar 

  60. Ya. M. Grigorenko, N. N. Kryukov, and Yu. I. Ivanova, “Spline-approximation solution of problems of the statics of orthotropic shallow shells with variable parameters,” Int. Appl. Mech., 36, No. 7, 888–895 (2000).

    Google Scholar 

  61. Ya. M. Grigorenko and L. S. Rozhok, “Stress-strain analysis of rectangular plates with a variable thickness and constant weight,” Int. Appl. Mech., 38, No. 2, 167–173 (2002).

    Google Scholar 

  62. Ya. M. Grigorenko, Ya. G. Savula, and I. S. Mukha, “Linear and nonlinear problems of the elastic deformation of complex shells and methods of their numerical solution,” Int. Appl. Mech., 36, No. 8, 979–1000 (2000).

    Google Scholar 

  63. Ya. M. Grigorenko and L. I. Zakhariichenko, “Design of corrugated cylindrical shells under different end conditions,” Int. Appl. Mech., 35, No. 9, 897–905 (1999).

    Google Scholar 

  64. I. A. Johns, “Analysis of laminated anisotropic plates and shells using symbolic computation,” Int. J. Mech. Sci., 41, No. 4-5, 397–417 (1999).

    Google Scholar 

  65. P. F. Jordan and P. E. Shelley, “Stabilization of unstable two-point boundary-value problems,” AIAA J., 4, No. 5, 923–924 (1966).

    Google Scholar 

  66. A. Kalnins, “Analysis of curved thin-walled shells of revolution,” AIAA J., 6, No. 4, 584–588 (1968).

    Google Scholar 

  67. K. H. Lee and L. Cao, “A predictor-corrector zig-zag model for the bending of laminated plates,” Int. J. Solids Struct., 33, No. 6, 879–897 (1996).

    Google Scholar 

  68. S. Li, “A cocongruous estimate of overall elastic stiffness,” Int. J. Solids Struct., 37, No. 40, 5599–5628 (2000).

    Google Scholar 

  69. L. Librescu and T. House, “Recent developments in the modeling and behavior of advanced sandwich constructions (survey),” Comp. Struct., 48, 1–17 (2000).

    Google Scholar 

  70. L. Li, I. Babuska, and J. Chen, “The boundary layer for p-model plate problems. Pt. 1. Asymptotic analysis,” Acta Mech., 122, No. 1-4, 181–201 (1997).

    Google Scholar 

  71. X. Li and D. Lin, “Zigzag theory for composite laminates,” AIAA J., 33, No. 6, 1163–1165 (1994).

    Google Scholar 

  72. T. I. Mo Devitt and J. G. Simmonds, “Reduction of the Sanders-Koiter equations for fully anisotropic circular cylindrical shells to two coupled equations for a stress and a curvature function,” Trans. ASME, J. Appl. Mech., 66, No. 3, 593–597 (1999).

    Google Scholar 

  73. O. V. Motugin and S. A. Nozarov, “Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plates, including laminated plates,” IMA J. Appl. Math., 65, No. 1, 1–28 (2000).

    Google Scholar 

  74. A. J. Paris and G. A. Costello, “Bending of core composite cylindrical shells,” Trans. ASME, J. Appl. Mech., 67, No. 1, 117–127 (2000).

    Google Scholar 

  75. E. A. Ramm, “Plate/shell element for large deflections and rotations-formulations and computational algorithms in finite element analysis,” Mit Press Cambridge, MA, Chp. 10, 264–293 (1977).

    Google Scholar 

  76. W. C. Rheinboldt and E. Riks, “Solution techniques for nonlinear finite element equations,” in: State of the Art Surveys on Finite Element Technology, ASME, New York (1983), pp. 183–223.

    Google Scholar 

  77. K. P. Soldatos, “Mechanics of cylindrical shells with non-circular cross-section. A survey,” Appl. Mech. Rev., 52, No. 8, 237–274 (1999).

    Google Scholar 

  78. B.-H. Sun, W. Zhang, K.-Y. Yeh, and F. D. J. Rimrott, “Exact displacement solution of arbitrary degree paraboidal shallow shell of revolution made of linear elastic materials,” Int. J. Solids Struct., 33, No. 16, 2299–2308 (1996).

    Google Scholar 

  79. A. T. Vasilenko, “Bending of an anisotropic elliptic plate on an elastic foundation,” Int. Appl. Mech., 38, No. 3, 351–355 (2002).

    Google Scholar 

  80. A. T. Vasilehko, Ya. M. Grigorenko, and G. K. Sudavtsova, “Solving problems on the stress state of thin shells of revolution under local loads,” Int. Appl. Mech., 36, No. 4, 518–525 (2000).

    Google Scholar 

  81. A. T. Vasilenko and G. K. Sudavtsova, “The stress state of stiffened shallow orthotropic shells,” Int. Appl. Mech., 37, No. 2, 251–262 (2001).

    Google Scholar 

  82. A. T. Vasilehko and G. P. Urusova, “The stress state of anisotropic conic shells with thickness varying in two directions,” Int. Appl. Mech., 36, No. 5, 631–638 (2000).

    Google Scholar 

  83. R. Zang, “A novel solution of toroidal shells under axisymmetric loading,” Appl. Math. Mech., 20, No. 5, 519–526 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, Y.M., Vasilenko, A.T. Some Approaches to the Solution of Problems on Thin Shells with Variable Geometrical and Mechanical Parameters. International Applied Mechanics 38, 1309–1341 (2002). https://doi.org/10.1023/A:1022693101758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022693101758

Keywords

Navigation